
THEN

CENTURY

,-v •s.'-.Vy ,•

THE
CENTURY

5 P
£2 O

£2 «

user
- ■ . •

worthy of the machines. Designed to provide
with a full course in Sinclair BASIC as used by the ZX81
and Spectrum it includes nearly 200 programs, plus
subroutines, and hundreds of hints and tips on getting
the most from your machine.

All you need is an hour a day and your Sinclair. The
Century Computer Programming Course provides the
rest:
H Step by step through the BASIC language
Understanding how a program works
How to design and structure programs
$ Debugging and tracing programs
Each stage illustrated with example programs and
exercises
A comprehensive program library, games to play
while you learn, useful programs for home, school or
college, subroutines to write into your own
programs — all tested and ready to key in.

Designed by a team of educationalists. The Century
Computer Programming Course is the ideal manual for *
the beginner, although the advanced programming
techniques will equally appeal to the experienced
Sinclair user.

THE COMPLETE GUIDE TO
PROGRAMMING IN SINCLAIR
BASIC USING THE ZX81 AND

SPECTRUM MICROCOMPUTERS

PETER MORSE
IAN ADAMSON
BEN ANREP
BRIAN HANCOCK

educationalists at the Polytechnic of
(Seirtral^iidon irid hfbasedon proven
teaching methods. It has been carefully
structured so that even the more Complex
developments can be digested in easy
stages. It starts from the moment you
unpack your machine through sound and
imaginative sections oh programming
techniques to applications programming,
making it essential reading for all Sinclair
users whatever their degree of computer
experience.

of Central London. He has wide
ranging teaching, research and
consultant activities in the fields of r
digital systems, software engineering
and computer education, f 1 |; "|

Ian Adamson is an educational
consultant active in the design of
technical and scientific courses, and
the associated buildings, laboratories
and equipment, working mainly on
overseas projects.

Ben Anrep is a Senior Programmer
working on microprocessor system
development and software with the
Computer Centre of PCL.

Brian Hancock is Senior Lecturer in
Computer Science. His teaching and
research activities include

methods and the programming
operation of computer courses for
schoolteachers.

Cover design and illustration

by Mushroom Production • London

CENTURY PUBLISHING CO. LTD

ISBN 0 7126 0072 8

Peter Morse is Professor and Head of Computer Science at the

Polytechnic of Central London. He has wide ranging teaching,

research and consultant activities in the fields of digital

systems, software engineering and computer education.

Ian Adamson is an educational consultant active in the design

of technical and scientific courses, and the associated buildings,

laboratories and equipment, working mainly on overseas

projects.

Ben Anrep is a Senior Programmer working on

microprocessor system development and software with the

Computer Centre of the PCL.

Brian Hancock is Senior Lecturer in Computer Science. His

teaching and research activities include programming methods

and the operation of computer courses for schoolteachers.

The Century Computer
Programming Course

The Complete Guide to Programming in Sinclair

BASIC Using the ZX81 and Spectrum Microcomputers

Peter Morse, Ian Adamson, Ben Anrep and

Brian Hancock

CENTURY PUBLISHING

LONDON

CONTENTS

page
Introduction xiii

PART ONE

FIRST STEPS xvii

SECTION A THE ZX81 MICROCOMPUTER SYSTEM 1

A1 ZX81 System Description 1

A2 Function of Components 4

SECTION B GETTING TO KNOW THE ZX81 7

B1 Connecting Up 7

B2 The Keyboard 9

B3 Cursors 10

B4 The Different Character Types 12

SECTION C BASIC BASIC 19

Cl The BASIC Language 19

C2 A Simple Program 19

C3 A Statement 20

C4 Statement Numbers 20

C5 Instructions 21

C6 Numeric Variables 21

C7 Strings and String Variables 23

C8 Operators and Operands 24

C9 Format of Statements 24

C10 Keying in a Statement 24

Cl 1 Correcting Errors 26

C12 Commands 27

C13 Editing the Program 28

C14 Listing a Program on the Screen 29

C15 Running the Program 29

C16 Error Messages 31

C17 How the Program Works 32

C18 Naming the Program 33

SECTION D SAVING, LOADING AND LISTING PROGRAMS 35

D1 Saving the Program on Cassette Tape 35

D2 Deleting the Program from Memory 38

D3 Loading the Program from Cassette Tape 40

v

D4 Listing the Program on the Printer 43

D5 Program Libraries and Directories 44

SECTION E IMPROVING THE PROGRAM 46

El Adding Comments 46

E2 Using the Print Statement 46

E3 Adding a Loop 47

E4 Stopping the Program 48

E5 Testing for a Condition 49

E6 Final Edit and Saving 51

SECTION F A GAME INTERLUDE 53

FI The Program Library 53

F2 A Game to Key In 53

PART TWO

ESSENTIALS OF BASIC PROGRAMMING 57

SECTION G PROGRAMMING METHODS I 59

G1 Programming 59

G2 Problem Analysis 60

G3 Structure Diagrams 63

G4 Classifying Program Modules 65

G5 Control Structures 67

G6 The Data Table 70

G7 Describe the Algorithm 72

G8 The Pseudocode Description 73

G9 Flowcharts 74

G10 Testing the Algorithm 84

SECTION H CONTROL 86

HI Control in Programs 86

H2 Condition Testing 86

H3 IF-THEN 87

H4 GOTO Instructions 88

H5 Decision Structures 89

H6 Logical Operators: AND/OR 96

SECTION I PRINTING 99

11 PRINT/LPRINT 99

12 Spacing Items on the Screen 100

vi

13 PRINT AT

14 The Graphics Characters on the ZX81

SECTION J ARITHMETIC AND FUNCTIONS

J1 Arithmetic Operations

J2 Priority

J3 Number

J4 The E Notation

J5 Rounding

J6 How Numbers are Handled

J7 Function

J8 List of Functions in Sinclair BASIC

J9 The Function Characters

J10 The Function Character Set

J11 The Standard Mathematical Functions

J12 Trigonometric Functions

J13 Special Functions

SECTION K STRINGS

K1 Strings

K2 Quotes and Quote Image

K3 String Input

K4 Length of a String

K5 Null Strings

K6 String and String Array Variables

K7 String and String Array Dimension

K8 String and String Array Assignment

K9 Substrings and String Slices

K10 String Concatenation

Kll Comparing Strings

K12 Strings and Numbers

SECTION L LOOPS

LI Loops

L2 Counters

L3 FOR-NEXT Loops

L4 Loops of Variable Length

L5 Nested Loops

SECTION M PLOTTING

M1 PLOT and UNPLOT

M2 Graph Plotting

vii

102

104

108

108

108

111

111

114

115

116

117

118

119

120

122

123

126

126

127

128

130

130

131

131

132

133

135

136

139

142

ll2

143

147

153

155

159

159

162

SECTION N SUBROUTINES 169

N1 Subroutines 169

N2 Subroutine Example 170

N3 Nested Subroutines 172

N4 Recursive Subroutines 173

N5 Computed GOSUBs 177

N6 Subroutine Use: Example 179

PART THREE

ADVANCED BASIC PROGRAMMING 183

SECTION O PROGRAMMING METHODS II 185

Ol Resume 185

02 Producing the Program 186

03 Coding and Design 186

04 Program Development 205

05 The Complete Programming Method 213

SECTION P THE CHARACTER SET AND CODES 226

PI The ZX81 Character Set and Codes 226

P2 The Spectrum Character Set and Codes 228

P3 Characters 230

P4 CHR$ and CODE 231

SECTION Q GRAPHICS 234

Q1 More Printing 234

Q2 More Plotting 239

Q3 Movement and Timing 241

Q4 The Display File 249

SECTION R LOGICAL OPERATIONS 261

R1 Logical Values and Numeric Values 261

R2 Boolean Operators: The AND Operator 261

R3 The OR Operator 262

R4 The NOT Operator 262

R5 Conditional Operators 263

R6 Logical Operations on Conditional Expressions 264

R7 Multiple Logic on Conditions 266

R8 Logical Operations on Numbers 267

R9 Priority 269

R10 Logical Operations with Strings 270

viii

R11 Logical Operations Between Strings and Conditions 270

R12 Logical Operations Between Numbers and Conditions 271

R13 Applications of Logical Operators 272

SECTION S LISTS AND ARRAYS 279

51 Dimension 279

52 Index Variable 279

53 Lists 280

54 Examples of Lists 280

55 String Arrays 283

56 Two Dimensional Numeric Arrays 284

57 Multi dimensional Arrays 286

58 Use of Arrays 287

SECTION T SORTING, SEARCHING AND STORING ARRAYS 292

T1 Searching and Sorting 292

T2 Bubble Sort with Flag 294

T3 Alphabetic Sort 295

T4 Insertion Sort 296

T5 Shell Sort 299

T6 Quick Sort 302

T7 Index Sort 306

T8 Linear Search 309

T9 Binary Search 310

T10 Storing a List 312

Til Storing a String Array 314

T12 Storing Data in Strings 316

SECTION U THE COMPUTER MEMORY 319

U1 Memory Organisation 319

U2 PEEK and POKE 325

U3 System Variables 332

PART FOUR

APPLICATIONS PROGRAMS AND GAMES 351

SECTION V APPLICATIONS PROGRAMS 353

VI Programming for Applications 353

V2 Instructions and Input Checks 354

V3 Example Programs 359

V4 Games Programming 425

xx

V5 Example Programs IMPORTANT NOTE FOR ALL READERS

PART FIVE

COVERING THE WHOLE SPECTRUM 437

SECTION W THE SPECTRUM 439

W1 The Spectrum System and Keyboard 439

W2 Additional Spectrum BASIC Functions 456

W3 Graphics, Colour and Sound 466

APPENDICES 477

I Sinclair BASIC Summary 477

II Error Codes 483

III ZX81 Character Codes by Keyboard Arrangement 487

IV Use of Cassette Tapes 491

V System Variables 493

VI Program Library 499

This book uses the Sinclair version of single keystroke BASIC as

featured on the ZX81 and Spectrum microcomputers. In the States the

ZX81 has been marketed as the Timex/Sinclair 1000 and the

Spectrum is known as the Timex/Sinclair 2000. American readers

should note that throughout the text we refer to these machines by their

UK names. There are a few minor differences between the UK version

of the ZX81 and the US TS 1000. The first is that the TS 1000 has

more ‘on board’ memory (2k) than its UK equivalent. However, this is

still insufficient for the scope of this text, and the majority of the

programs occurring in the book will require a 16k RAM pack. The

second difference is that two keys, which do exactly the same thing, are

labelled differently. Thus, NEWLINE and ENTER are equivalent on

the ZX81 and the TS 1000, as are RUBOUT and DELETE. On each

occasion that these commands occur in the text, readers will find either

NEWLINE (ENTER) or RUBOUT (DELETE).

For the sake of clarity we have used the ZX81/TS 1000 version of

BASIC as the foundation of the book, and have noted those instances

where Spectrum (TS 2000) BASIC differs from that used by the ZX81

(TS 1000). Functions and commands exclusive to the Spectrum (TS

2000) BASIC superset are fully explained at the end of the book (Units

W2 and W3).
In short, the book has been designed to enable its readers to learn

how to program using any of the Sinclair machines.

Users of the Spectrum should note that all programs are listed in

capital letters throughout. To get program results and listings that look

identical to those given here the capital letter (CAPS) mode must be

used on the Spectrum for all letters input or printed. The first two

Units of Part One deal only with the ZX81. The Spectrum user should

read instead Unit W1 (page 439) of the Spectrum dedicated Section

which forms Part Five of this text.

INTRODUCTION

DEDICATION

To the Few, the Many, the One and the Void.

The central conviction behind this book is that programming

computers to solve problems is essentially a language independent

activity. This means that there is no reason why Sinclair BASIC should

not be learnt in exactly the same way as other high level languages: that

is with the fundamentals of problem solving and structured

programming introduced at an early stage. For the majority of readers,

Sinclair BASIC will be their First introduction to computing. We would

like to think that many will use it as a stepping stone to more advanced

study and application. Good problem solving and programming habits

will make both applications programming in BASIC and learning a

different structured language like PASCAL (which has a richer

programming environment than BASIC), much easier. We are

convinced that bad programming habits acquired early on are

extremely difficult to throw off; thus, this book has been designed to

introduce readers to the elements of computer programming in a

systematic manner, with the emphasis on correct rather than merely

adequate techniques.
Although we intend the text to be a serious treatment of Sinclair

BASIC, as an introduction to computing it assumes no prior

knowledge of computers and only a minimal understanding of

mathematics. (Without the maths you will still be able to make your

way through the book, but if you don’t know what SIN and COS are,

you won’t be able to write programs using them!) Before all else, we

intend to give readers a full introduction to the essential control and

modular structures present in truly structured computer languages and

the way in which they operate in Sinclair BASIC. Once again, we hope

that with this behind them, readers will be able to go on to tackle more

sophisticated computer languages with a clear understanding of the

essentials of good programming in any language. This approach also

ensures that the reader who stays with his Sinclair machine will be able

to maximise its potential. As it runs on the world’s most popular

microcomputers, there can be little doubt that Sinclair BASIC will

become one of the most commonly used computer languages. This,

coupled with the fact that more and more software is becoming

available for the machines, makes it all the more important that users

attain a sound understanding of the language. Most published

programs in books and magazines have little in the way of

documentation. Debugging them, normally a tedious and difficult

task, becomes much easier if the techniques to do so are known.

This book introduces readers to three main sets of computer rules:

1 The rules of using your computer system.

2 The rules of the Sinclair BASIC programming language.

3 The rules of problem solving and structured programming using

Sinclair BASIC.

xiii

WHY DID WE WRITE THIS BOOK?

The sheer availability of the Sinclair machines demands that they be

treated seriously as a means of teaching progamming methods to a

large number of people. The programmer of a personal computer must

understand the characteristics of the machine, the high level language

(in this case BASIC), by which it is used and controlled and the

problem solving techniques to which it should be applied.

The first rush of books on the Sinclair machines has been, to put it

kindly, disappointing. Certainly none can be considered a serious text

on Sinclair BASIC. We felt that a book was needed which gave the first

time user a worthwhile home tutor on computing. So we decided to
write one!

WHO IS THE BOOK FOR?

The book has been written for the home user or school user who has

just bought a ZX81 or Spectrum and wants to learn how to program it

from scratch. Experience has shown that most Sinclair users will buy

more than one book on the subject of programming their machine.

This book will clear up a few misunderstandings and confusions

presented by other texts and will take you further into programming
techniques.

The text has also been designed as an aid to Sinclair BASIC

programmers who are having trouble designing error free programs

and are attempting some serious application.

HOW IS THE BOOK STRUCTURED?

As a self-study text, this book should be worked through with your

computer in front of you, so that programs and examples can be keyed
in as and when they arise.

The book has twenty-three Sections and is divided into five Parts.

Part 1: FIRST STEPS in which, after a brief introduction to the

machine and system (the first two units are ZX81 specific, and

Spectrum users should go immediately to the Spectrum specific

units -W1 on page 439 - before returning to start the main text at

Section C) you are told how to set it up correctly and start to write and
run simple BASIC programs.

Part 2: FUNDAMENTALS OF BASIC PROGRAMMING, which

first introduces the reader to the fundamentals of problem solving and

structured programming in BASIC. The properties and

implementation of important language CONTROL

STRUCTURES - decisions, loops, and subroutines - are introduced,

together with the use of arithmetic, functions, strings, and how to print
and plot information on the screen.

Part 3: ADVANCED BASIC PROGRAMMING contains further

sections on programming methodology, as well as details of debugging,

testing and documenting programs. Interactive graphics is introduced,

together with the use of logical operators. Lists and arrays and methods

to sort and search them (vital subjects for applications programming)

and a treatment of how the computer uses its memory are fully

covered.
Part 4: APPLICATIONS PROGRAMMING AND GAMES

focuses the fundamental programming skills acquired in the earlier

parts of the book in the study of specific examples, linked to some

further discussion of programming technique.

Part 5: COVERING THE WHOLE SPECTRUM is the portion of

the book dedicated to the Spectrum. The first Unit of this Section,

dealing with the Spectrum system and keyboard, replaces the ZX81

specific Sections A and B, since there are major differences in the

arrangements of the two machines which require separate treatment.

The two following Units in this Part of the book deal with additional

features of the Spectrum not covered in the main text. It is intended

that, after using the first Unit to acquaint him or herself with the

Spectrum, the reader should defer reading these Units until the main

body of the text has been worked through. For the Spectrum user, this

starts at Section C.

The book is detailed and thorough. Remember that programming is

learned most effectively through experience. You should work through

the text systematically using your computer. Key in each example in

the text and run it. Some further programs to key in are available in

Appendix VI.

The exercises which appear at regular intervals throughout the book

are meant to give you practice in programming methods and to further

illustrate the function and application of the Sinclair BASIC language

constructions. Attempt most of them, but don’t ever allow yourself to

become discouraged. If you get stuck, go back through the relevant

section again.
We hope that you find learning BASIC programming with this book

a successful, enjoyable and useful experience, and that the knowledge

and programming skills obtained will be a step on the path to a more

advanced use of your Spectrum or ZX81 for real applications and

enjoyment.

xiv
XV

PART ONE

FIRST STEPS

Important Note: The first two units of this part are
specific to the ZX81. Spectrum users should ignore these
pages and directly GOTO the first Spectrum specific
section (W1 on page 439) before returning to the main
text (Section C on page 19).

SECTION A: ZX81 MICROCOMPUTER SYSTEM

Al: ZX81 Description

We assume you have in front of you' the components of your ZX81

computer system.

It consists of:

1 The ZX81 microcomputer with its touch-sensitive keyboard.

2 The Sinclair 16k RAM pack (Random Access Memory) or a

RAM pack of at least 16k produced by one of the other

manufacturers for the ZX81.

3 The ZX power supply, with a lead and plug, for connection to

the a.c. power supply, and the lead, ending in a jack-plug, to

connect the power supply unit to the ZX81.

4 The ZX printer and its connector socket.

5 A domestic UHF TV set to be used as a TV monitor.

6 A mono cassette recorder, with power supply lead if not battery

powered.

7 The aerial cable which connects the ZX81 to the TV monitor.

8 A pair of cassette recorder leads fitted with 3.5mm jack-plugs on

each end.

These components make up a complete system. As far as this text is

concerned, the least crucial component is the printer. Without it you

can simply ignore the printer-related portions, and will be able to work

through the book and learn the BASIC programming techniques just

as well. However, it is extremely useful to have a printer both for hard¬

copy printouts of results, and more importantly for program listings for

documentation purposes.

There are a large number of ‘add-ons’ and accessories available for

the ZX81. None of these are of any interest as far as this book is

concerned, and most should be considered only when you have

absorbed the text and are going to write programs for specific purposes,

which might require the facilities provided by some of these units. A

noteworthy exception is a workstation to hold the components of the

system securely. There are types available which have on/off switches

for the d.c. power supply from the power supply unit, which saves a lot

6f plug pulling and re-insertion, since pulling the power plug out of the

ZX81 is the only way to re-set the computer if it ‘crashes’ (i.e. will not

respond to keyboard commands).

What is vital is enough memory. RAM memory is measured by

kilobytes (‘k’). The basic ZX81 has only lk of RAM built in (2k on the

Timex/Sinclair 1000), and, without an add-on, RAM memory has

very little space available for programs. Computers are essentially

devices which store and manipulate data, and since programs, data,

and the manipulations all take up memory space, an add-on RAM

1

Figure 1

ZX81 SYSTEM DIAGRAM

a.c. household power supply

NOTE: U.S. USERS MAY HAVE ANTENNAE ON/OFF SWITCH FITTED IN AERIAL
LEAD, SHOWN AS DOTTED BOX IN DIAGRAM.

memory is needed. RAM memory of up to 48k is available for the

ZX81, but 16k is more than enough for our purposes. Independently

produced RAM packs are usually just as good as those produced by

Sinclair.

The cassette recorder should be mono, since stereo tape deck

recording heads can cause problems, even used on one channel only.

The cheaper recorders work somewhat better (due to the less

sophisticated audio circuits being better for handling the crude form of

the computer’s signals) than more expensive ones, but try to get one

with a tape counter, as finding programs without one can be

irritatingly time consuming. You should always use the same recorder,

as problems can be encountered when playing back tapes recorded on a

different machine. Battery-operated recorders actually avoid some

potential problems, but must always have good batteries, to keep tape

speed constant. The cheapest solution to this in the long term

(especially since if you’re not sure about the state of the batteries you

have to put in new ones) is to buy nickel-cadmium batteries and a

charging unit. All recorders have automatic level controls for

recording, but some cause problems with their continual variation

around the correct level (‘hunting’). Get a model that has been shown

to be compatible with the Sinclair computers.

Having a TV for exclusive use with your computer system is a good

idea, to avoid having to unplug and move around elements of your

system (it also avoids arguments with non-computing members of the

family!).

Some problems can interfere with the operation of your computer

(leaving to one side things like spilling coffee on it or otherwise abusing

it!). The first is overheating. After the computer has been on for some

time, it may heat up to such an extent that it ‘whites out’ and wipes out

the program you have just finished, except for that last line. This is

very irritating, to say the least. Some ZX81s seem to suffer from this

more than others. If it is a persistent problem, it can be helped by

placing a fairly hefty chunk of metal on top of the case to radiate heat

away more effectively. It should be approximately 3x2 inches and 0.5

inch deep, have a flat surface to sit on the ZX81 case, and should be

placed on the case, above the keyboard, on the left-hand side of the

case.

The corollary to this problem is that you should SAVE a long

program being developed or keyed in at intervals, and/or take listings

from the printer, to avoid a total loss if you do get a white out. The

same problem can also be caused by two other factors, and this

procedure will protect against the worst results from these problems as

well. The first is that household power supplies are sometimes

interrupted, or occasionally have brief large voltage fluctuations.

Computers are sensitive to such things, and a crash may be caused.

Other than buying a stabiliser which will continue to supply power

during such an interruption (of very short duration, but computers

work fast!) we cannot protect against a.c. supply fluctuations, but

similar results can sometimes be caused by appliances connected to the

same local power circuit switching on and off, and this should be

investigated if the problem is frequent.

The other main source of problems is the connector to the RAM

pack and printer via the edge connectors at the back of the ZX81.

Movement can be caused in this connector by flexing the system whilst

keying in programs. This can be minimised by always pushing the

connectors home firmly before switching on, but a better solution is to

attach the components to a board, fixing them down to a suitably rigid

base with ‘Blu-Tack’ or the double sided adhesive pads that are now

available. Fix the printer down as well - the process of tearing off

printout can move printer and connector if you are not careful. Note

that the method of fixing cannot be permanent, which is why Blu-Tack

2 3

or a similar plastic fixative is recommended.

The edge connectors themselves are gold plated, but they connect to

the printed circuit board edges which may become oxidised, causing

circuit problems (not necessarily white-outs or crashes - the keyboard

may cease to work, or the printer miss lines, for example). Proprietary

(non-abrasive) contact cleaners should be used to ensure clean

contacts.

Other than the problems above, the only maintenance that should be

needed is the brushing away of the dust that accumulates in the printer

from the burnt-off particles of paper. After removing the paper holder,

use a soft small brush (e.g. a small paint brush) to clear away the dust.

Pay particular attention to the slot in which the electrode runs, but if,

as sometimes happens, the electrode is visible, do not disturb it. (The

electrode is a small piece of wire which is normally not visible, but if

BREAK has been used it can be left in the middle of the printer slot.)

A2: Function of Components

This is a programming text, not a manual on computer architecture or

computer science. However, we thought it might be useful to provide

you with a brief rundown of the functions of each of the components of

your microcomputer system.

Device Function

ZX81 computer board

(inside case)

Keyboard

TV set

Data processing and control of

information handling. Input

from keyboard or cassette.

Output to TV screen and

printer.

Input of information. Programs,

data and commands are keyed

in. On-line control.

Used as V.D.U. (visual display

unit) monitor. Provides on-line

output of information - visual

display of programs, results

(data, graphs, pictures) and

control commands.

Cassette recorder Off-line storage of information.

Program data are stored (written)

as coded electromagnetic

impulses on cassette tapes. They

can be played back (loaded) at

any time for use again. The

computer reads the data from

the tape.

ZX printer Output device, to provide a

permanent printed record of the

screen display, program listings

or information in the computer

memory. Prints on

electrosensitive paper.

16k RAM pack Add-on memory enabling large

programs to be stored and run.

K stands for kilobyte. One byte is

eight bits, which are the £mary

digits (0 and 1, represented by

on-off switches in the computer)

computers work with. A kilobyte

is roughly 1000 bytes, hence the

name, (It is actually 210, 1024).

Power supply Supplies the d.c. current (9 volts

at 1.2 amps) to run the

computer, RAM pack and

printer, from the household

power supply.

Cables To interconnect the devices

which make up the system. The

printer uses the same socket as

the memory pack and has an

extension socket to allow this.

The printed circuit board inside the ZX81 holds and connects the IC

(integrated circuit) microchips which provide the computing facilities.

These are:

1 Z80A CPU (Central Processing Unit) microprocessor chip

which is the heart of the system. It is used in many other

microcomputers, and performs the arithmetic manipulations.

2 ROM (Read Only Memory) chip holds the 8k BASIC

interpreter which translates BASIC instructions into the

machine code instructions that the Z80A operates with. The

data in this chip is fixed, hence the name, and also stable - it

remains when the power is switched off.

4 5

3 RAM (Random Access Memory) chip provides a lk* memory

store. When the memory pack is fitted it blocks off this memory

and substitutes its own 16k of memory. This memory is

volatile - the data is stored as electrical impulses and is lost when

the power is switched off. This memory stores the BASIC

programs, the values of variables (including some system variables

that the computer uses to organise its own affairs), a memory

picture of the TV screen display, and the stacks which hold the

numbers whilst they are being manipulated. This is covered in

more detail in Section U.

4 The Logic chip co-ordinates the operation of the other chips.

Also mounted on the board are: the stabiliser for the 5 volt supply the

computer takes from the power supply, the TV signal modulator and

the sockets for the connecting cables to the TV and cassette recorder.

*2k on the TS 1000.

SECTION B: GETTING TO KNOW THE ZX81

Bi: Connecting Up

1 Lay out the ZX81 system devices on your work area as on page

2. It is far better to have an area where the system can be set up

permanently. Failing this, a board can be used to mount the

components,

2 Place the a.c. power supply plugs of the power supply, TV and

tape recorder next to the sockets. A plug board with multiple

sockets mounted on it is better than an extension socket fitting.

3 Connect the printer socket into the 23 pin edge connector at the

back of the ZX81. Get the slot in the ZX81 board and the block

in the printer socket aligned and push in gently but firmly.

4 Connect the 16k RAM pack socket into the extension connector

at the back of the printer socket in the same way. This is better

done with the ZX81 flat on the table to avoid too much stress on

the connectors, which might occur if you are holding up the

ZX81.
5 With both connectors inserted, push the RAM pack firmly in to

ensure the connectors are fully seated home.

6 Connect the power supply cable into the socket marked DC on

the left-hand side of the ZX81.

7 Connect one end of the twin jack-plug leads, placing one jack-

plug into each of the MIC and EAR sockets on the cassette

recorder.
Place the other jack-plugs into the ZX81 sockets. It is very

useful to have the EAR and MIC sockets marked on the top of

the ZX81 case, where the marks can be seen. Use sticky labels of

some type to mark which is which, and also the exact centre of

the plug socket. This will save much probing of sockets (there

are no guides to ensure you get the socket) and peering at the

markings on the side of the ZX81, which are scarcely visible

when the ZX81 is flat on a surface,

The yellow banded plugs should go to both MIC sockets. You

can also mark the other jack-plug with E or EAR as a helpful

aid. Push the jack-plugs gently in, making sure the tips are in the

sockets (which has to be done by feel) until a resistance is felt,

then push until they click into place. Waggle them slightly to

ensure they are well-seated.

8 Connect the aerial lead into the TV aerial socket at the rear of

the TV and into the TV socket on the ZX81. A slight twisting

motion may be needed if the fit is tight.

US Users will find that the TV connects to the antenna lead with
standard terminals, and an antenna ON/OFF switch is fitted between
the antenna lead and the antenna lead that plugs into the

6 7

Timex/Sinclair 1000 version of the ZX8L This switch must of course
be ON.

9 Straighten the interconnecting cables on your work area at this

point. Make sure that the cassette leads are not in contact with

any a.c. power leads.

SWITCHING ON

1 Ensure that the TV receiver is off and that no cassette recorder

keys are depressed.

2 Plug the power supply, TV, and cassette recorder plugs into the
a.c. power supply.

3 Switch on the a.c. power sockets (if they have switches).

4 There are no ON/OFF switches on the ZX81 or on most cassette

recorders - they are now powered up.

5 Switch on the TV.

6 Turn the volume control on the TV to zero.

7 Turn the brightness control to MAXIMUM.

8 Turn the contrast control to MINIMUM.

9 Tune in the TV. With a rotary tuning control, turn to channel

36. Otherwise select a channel, using the pushbutton or other

channel select switch, and tune this channel in. When the TV is

at the right setting, a small black square with a white K inset

appears. This is the K-cursor, and appears on the bottom left-
hand side of the screen.

U.S. Users should note that the Timex/Sinclair 1000 version of the
ZX81 has a channel select switch for Channel 1 or Channel 2 fitted
underneath the case. Choose whichever channel is not transmitting in
your area, and select this channel on the TV and the computer.

Adjust the tuning, brightness and contrast until the cursor is
distinct, and the white K clear.

Check that the cassette recorder keys function. Insert a blank
cassette, and try all the controls.

Insert a roll of silver printing paper into the printer and press the

button on the right-hand side of the printer to feed some paper

through. Check the paper does not rub on either side of the
printer as it comes through.

Press the [COPY) key and then the

The printer will start to copy what

inches of paper will be fed through. There will be nothing

printed on it as there is nothing on the screen. A message 0/0

will appear at the bottom of the screen.

N.B. The bottom two lines of the screen are never printed

and are used for keying in program lines and commands. These

program lines, when correct, are transferred into an area of

is on the screen. About 3

10

11

12

13

8

memory reserved for the programs by pressing the NEWLINE

(ENTER) key. The program lines will then appear on the

printer when the COPY command is given.

14 Press characters at random on the keyboard. They will appear at

the bottom of the screen. Press 1 SHIFT 1 and I EDIT | keys

together to clear the screen.

15 If the [K) cursor will not appear on the screen switch off the

power supply and adjust the 16k RAM pack and printer

connections. Switch on the power supply again and retune the

TV.
N.B. Never adjust or pull out the RAM pack when the power

supply is ON, you may damage it.

16 Other components failing to work will probably be caused by

plugs not switched on, or fuses blown. Alternatively, it could be

that some connections are not being properly made. You should

remove and re-insert jack-plugs and connectors.

17 On leaving your computer:

a Leave it connected up

b Switch OFF a.c. power supply plugs and TV

c Disconnect plugs from sockets.

B2: The Keyboard

The ZX81 keyboard has 40 touch sensitive keys arranged in 4

rows of 10 keys.

At first sight it looks like a typewriter keyboard, but a closer look

reveals that some keys have five functions or characters written on

them. In fact:

Six different characters can be obtained from some keys!

The keyboard contains:

(1) The digits 0 to 9

(2) The letters of the alphabet printed in upper case

(3) The complete BASIC language

- instructions

- commands

- arithmetic, conditional and logical operators

- arithmetic functions

(4) Grammatical signs and symbols

(5) Special control keys

(6) Graphics symbols

These are all called characters.

Notice that words like PRINT, RUN, SLOW, LET, INKEY$ are

9

written on the keys and are printed on the screen when we press that key

in the correct mode.

The facility of complete words in the BASIC language being printed

at the press of a single key is called

SINGLE KEYSTROKE BASIC

On most other computers you have to key in each letter of, for

example, the instruction PRINT. This is inefficient. The ZX81 is very

powerful in this respect.

The keyboard contains most of the characters in the ZX81 character

set and a few special keys. Some 202 different characters are available.

Some print on the screen, others are non-printing, e.g. RUBOUT
(DELETE).

Each of the different types of character is described in Section B4.

I he ZX81 keyboard layout is reproduced in the diagram on the next
page.

B3: Cursors

E E H] 0 a (E
Cursors indicate what operational mode the computer is in and what

symbol or name should be typed in next. They appear in inverse video

(a white letter in a black square).

K Keyword mode.

ZX81 expects a command

a line number

or a keyword

Keywords are the symbols printed on the keyboard

above the keys (see keyboard). SHIFTed keys also
_ function in this mode.

|~L | Letter mode.

Occurs at most other times.

ZX81 expects a letter

a number

an operator

or a special command

SHIFTed keys function in this mode.

[F 1 Function mode.

Obtained by pressing FUNCTION key (SHIFT,

NEWLINE/ENTER).

The functions obtainable are printed under each key
in white.

10

Z
X

81

K
E

Y
B

O
A

R
D

11

S
P

A
C

E

Only one function can be obtained each time

FUNCTION is pressed.

[G | Graphics mode.

Obtained by pressing GRAPHICS key (SHIFT, 9).

Mode lasts until the GRAPHICS key is pressed again.

In the graphics mode 36 different characters are

obtained by pressing the keys with the SHIFT key

depressed as well. These are shifted graphics characters.

38 different characters (mainly letters printed in the

inverse mode) are obtained by pressing the keys.

| S | Syntax error cursor.

This cursor appears in a statement line at the bottom of

the screen if the computer finds that there is an error in

it. It appears when we try to enter an incorrect line of

program into memory (i.e. after we press NEWLINE

(ENTER) when at the bottom of the screen).

The 1 S I cursor appears next to the last error in the

line. (There can be more than one). Editing on the line

can take place immediately. The 0D cursor disappears

when an edit operation is performed. It will re-appear

(if necessary) when NEWLINE (ENTER) is pressed

again.

| > [Current line cursor.

When entering statements into the program the last line

to be entered is called the current line and is indicated

by this symbol placed after the line number. The

movement of this cursor up and down the screen,

pointing to different lines, is controlled by the | and

f keys (SHIFT 6 and 7).

If EDIT (SHIFT 1) is pressed, the current line is

brought down to the bottom of the screen and can be

edited.

B4: The Different Character Types

THE 6 CHARACTER TYPES ON A KEY

If we examine a particular key, say [R] , we can classify the 6 character

types, as seen in the diagram below.

12

KEYWORD

On top of the R key is the word RUN. This is a KEYWORD

character.

All characters printed on the keyboard in this position are

KEYWORDS. KEYWORDS will be printed on the screen if the

desired key is pressed when the ZX81 is in KEYWORD MODE (i.e.

the m cursor is on the screen).

Exercise

If the K cursor is at the bottom left-hand side of the screen then enter

a keyword. Press the PRINT (P) key. Notice that PRINT appears on

the screen but the [~K] cursor has changed to an | L | cursor and the

computer is in the letter mode. This means that it is expecting a letter

to be keyed in next, e.g. A.

If we try to key in another keyword, e.g. [PLOT 1 , the keyword

PLOT does not appear. Instead the letter Qis printed. So the rule is:

No two keywords may be entered in succession.

To clear the screen and return to [k [mode press SHIFT | EDIT [

keys together. Try it. Print different keywords on the screen. Which

one does not print?

LETTER

The LETTER characters (or QWERTY characters as they are

sometimes called) are the bold type letters on each key. They are

identical to those on a typewriter keyboard. It is worth trying to

memorise these. Do it by lines, and in groups of five.

Letter characters may be keyed, in when the computer is in the letter

mode and the [L | cursor appears in the entered program line, or at the

bottom left-hand side of the screen. Certain letters may be entered in

the 1 K 1 mode as default when there is no keyword on that key, e.g. the

digits 0-9 and the full stop [BREAK | is also an exception. A space

is printed in the | K | mode.

13

Exercise

Key in fPRINT | to obtain the [TT] mode. Then key in the letters,

starting from ft].

What happens with

SHIFT

There are 39 SHIFT characters on the keyboard. These may be

obtained in the _K_ or _L_ modes, i.e. when |K | or [L | is on the

screen.

To obtain these characters or symbols e.g. < = in our diagram,

press the [SHIFT 1 key and the desired I CHARACTER | key at the

same time.

Exercise

Start keying in the SHIFT characters starting with [EDIT | on the top

line of the keyboard.

Notice what happens with:

EDIT

THE ARROW KEYS (f | <«- ->)

GRAPHICS

RUBOUT (DELETE)

FUNCTION

GRAPHICS

There are two types of graphics characters, the characters like BJ as in

our diagram below, and the letter and shift characters printed in

INVERSE (i.e. white letter on black background) on the screen (0).

Exercise

To print the graphics characters on the screen key in:

INEWLINE (ENTER) and

14

Notice the mode cursor changes.

Note that to come out of the [G] mode, you need to press [SHIFT 1

[GRAPHICS 1 again, to get the PP cursor back. To clear the screen

press | NEWLINE (ENTER) |

Repeat the exercise and obtain all the graphics characters. Where no

graphics character is printed on the key then the inverse of the shift

character is obtained by default. Test this out.

INVERSE GRAPHICS

These characters are the inverse video letter characters, and are

obtained in the GRAPHICS mode, i.e. G 1 cursor on the screen, when

the desired key is pressed.

15

Exercise

Key in the characters as before, but this time only press the letters and

not the shift characters when in the [G1 mode.

What happens when you press SPACE ?

FUNCTION

There are 24 Function characters that are obtained only in the

Function mode, when the |~F~1 cursor is on the screen. The [F jcursor is

obtained by pressing the [SHIFT | and [FUNCTION"] keys together.

Only one Function character may be entered. The mode changes to

|Ll after entry. To input another Function character we need to get

back to the F 1 mode again.

Exercise

Get into the FUNCTION mode and key in all the function characters.

Key in - 1 PRINT 1

I SHIFT I [FUNCTION |

m,
[NEWLINE (ENTER)]

What happens? Press NEWLINE (ENTER) again to clear the screen.

HOW TO OBTAIN THE DIFFERENT CHARACTER TYPES

Character Number of Mode To Obtain To Obtain the
Type Chars. the Mode: Character:

KEYWORD 26 pT] Automatic | CHARACTER |

SHIFT 39 □□ Automatic 1 SHIFT |

m | CHARACTER [

39 1X1
I

(sometimes)

Automatic CHARACTER

| G | 1 SHIFT

CHARACTER

INVERSE
GRAPHICS

| G | | SHIFT
CHARACTER

24 m
CHARACTER

16

Exercise

Using the above table, obtain all the modes and key in example

character types.

ALPHABETIC CHARACTER/KEY TABLE

The following table locates the letter or number key which provides

each character (keyword, function, or symbol) on the keyboard. Use

this table when entering programs until you are familiar with the

placing of all the commands. An * indicates a non-printing character.

BASIC Word Keyword (K), Function
or Shift and Key to Press

ABS Function G LPRINT Shift S

ACS Function S NEW (K) A

AND Shift 2 NEXT Shift N

ASN Function A NOT Function N

AT Function C OR Shift W

ATN Function D PAUSE Shift M

CHR$ Function U PEEK Function O

CLEAR (K) X PI (Tt) Function M

CLS (K) V PLOT Function Q

CODE Function I POKE Function O

CONT (K) C PRINT Function P

COPY (K) z RAND Function T

COS Function W REM Function E

DELETE Shift 0 * RETURN Function Y

DIM (K) D RND Function T
EDIT Shift 1 * RUBOUT Shift 0 *
EXP Function X RUN Shift R
FAST Shift F SAVE Shift S
FOR (K)F SCROLL Shift B
FUNCTION Shift NEWLINE(ENTER) SGN Function F
GOSUB (K) H SIN Function Q
GOTO (K) G SLOW Shift D
GRAPHICS Shift 9 * SQR Function H
IF (K) U STEP Shift E
INKEY$ Function B STOP Shift A
INPUT (K) I STR$ Function Y
INT Function F TAB Function P
LEN Function K TAN Function E
LET (K)L THEN Shift 2
LIST (K)K TO Shift 4
LLIST Shift G UNPLOT Function W
LN Function Z USR Function L
LOAD (K)J VAL Function J

17

SYMBOLS

Symbol Cursor and Key

K or L, Full stop or dec¬
imal point (Separate key)

Symbol Meaning

> K or L, shifted Full stop. Comma
; K or L, shifted X. Semicolon

K or L, shifted Z. Colon
? K or L, shifted C. Question mark

K or L, shifted P. String quote
na K or L, shifted Q. Quote image

(K or L, shifted I. Open bracket

) K or L, shifted O. Close bracket
£ K or L, shifted SPACE. Pound

$ K or L, shifted U. Dollar
+ K or L, shifted K. Plus

K or L, shifted J. Minus
* K or L, shifted B. Times
t R or L, shifted V. Divide
* *_ Kor L, shifted H. To power
= K or L, shifted L. Equals
> K or L, shifted M. Greater than
< K or L, shifted N. Less than
< = K or L, shifted R. Less than or equal to
> = K or L, shifted Y. Greater than or equal to
<> K or L, shifted T. Not equal to

T K or L, shifted 5. Cursor left
K or L, shifted 6. Cursor down t K or L, shifted 7. Cursor up
K or L, shifted 8. Cursor right

18

SECTION C: BASIC BASIC

Cl: The BASIC Language

This book is all about BASIC, which is the world’s most commonly

used computer language. Just as English is a natural language used to

communicate with people, BASIC is a formal language used to

communicate with COMPUTERS. Like natural languages BASIC

has grammatical rules which, although they are fairly simple, must be

strictly followed to ensure that the computer understands exactly what

it is being instructed to do.

BASIC stands for Beginners All-Purpose Symbolic Instruction

Code. It was invented in 1964 in the USA and is a combination of

simple English and algebra. BASIC is the language we will use

throughout this book to write PROGRAMS. Programs instruct the

computer what to do, and the sequence in which particular operations

are to be performed.
BASIC is a high-level programming language. The instructions we write

in BASIC are interpreted by a built-in program into the low-level

programming language (the MACHINE CODE) that directly controls

the switching of the electrical impulses inside the MICROCHIPS

which store and manipulate the data. High-level languages like BASIC

are far easier to write programs in than the low-level languages, and

the simple language and structure of BASIC was designed to be easy to

learn. The Sinclair version of BASIC also has single-keystroke entry of

BASIC words, which makes mistakes in spelling impossible.

C2: A Simple Program

A sequence of BASIC statements is called a PROGRAM. Here

is an example of a program:

10 INPUT A

20 INPUT B

30 LET S = A + B

40 PRINT S

The simple program above adds two numbers keyed in on the

keyboard and prints the results on the screen. A program is keyed (or

typed or input or entered) into the computer by you, the programmer,

line by line, from the keyboard.

Before we key a program in we design it to make the computer do

exactly what we want. We first write a program down line by line on a

piece of paper. This is called CODING.

After coding the program we key it into the computer and RUN it.

To RUN it we give the computer a COMMAND to RUN the program

to see if it works. It probably won’t work the first time, unless it’s as

19

simple as our example. A program which doesn't work as intended is

said to contain ERRORS or BUGS.

If we have asked it to do something it can't do, or forgotten to

include an instruction the computer will tell us what is wrong and give

us an ERROR MESSAGE. If the program runs without error

messages but doesn't do what we wanted it to then it is the

programmers’ fault. In either case we need to correct or EDIT or

DEBUG the program. We do this whilst the program is in the

computer, using the editing facilities of the computer.

Editing or revising a program is called PROGRAM

DEVELOPMENT. When the editing is finished and the program

works we take a LISTING of the program on the PRINTER. We can

also SAVE a copy of our program on cassette tape and STORE it so

that we can LOAD it back into the computer.

The complete exercise of designing, coding, developing and

documenting a program is called PROGRAMMING.

C3: A Statement

This is a BASIC statement:

10 INPUT A

A statement is also called a LINE. A statement can:

(1) instruct the computer to do something

(2) state something

A statement is composed of: a line number, e.g. 10

an instruction, e.g. INPUT

some variables, e.g, A

Statements are either: Executable - those which specify a program

action, as with our INPUT A, or Non-Executable - those which

provide information for the user of the program.

All variables (e.g. A in our example) must be initialised to a start

value before being used in a program. In this case the statement:

10 INPUT A

tells the computer to request the user to input a value for the variable A

from the keyboard.

C4: Statement Numbers

Each BASIC statement or line must begin with a statement

number, as with 20 in this example.

20 INPUT B

The number 20 is called a statement number or line number. The

statement number is chosen by you, the programmer. It may be any

number from 1 to 9999 inclusive. The computer uses the numbers to

keep the statements in order. Each statement has a unique statement

20

number. If you use the same statement number twice, the second line

will replace the first.
.Statements may be keyed in via the keyboard in any order. The

computer sorts them into the correct sequence. Statements are usually

numbered in tens so that additional statements are easily inserted later.

For example:

10 INPUT A

20 INPUT B

INPUTCl (Inserted line)

LET S = A + B

The computer runs the program in order of statement numbers.

C5: Instructions

A statement gives an instruction to the computer. In this

example it is LET.

30 LET S = A + B

Instructions are called statement types because they identify a type of

statement. In our example the statement is a LET statement. It tells

the computer to let the variable S have a value equal to the sum of the

values of variable A and variable B.

C6: Numeric Variables

A numeric variable is the name given to a storage location

which holds a number in the computer's memory.

A numeric variable can have a name which is:

A letter from A~Z

or A letter followed by a number

or A group of letters and numbers

Variable names must start with a letter.

Examples of numeric variables: A

NUMBER 1

B2

X136

TOTAL

Numeric variables are used to represent numbers inside the computer.

We can give (or assign) different values to a variable. The numbers we

give to variables are used in calculations.

Variables are symbols or names given to parameters or quantities.

They represent the VALUE of the parameter, i.e. the number stored

21

in the named memory location. We can use variable names which

remind us of the parameter concerned, but they should not be too long

or you will find them tiresome to key in (which is why single letters are

usually used).

For example, we could use:

S - Speed

PRICE - Price of fish

SUM 1 - Sum of the first set of numbers

R3 - Resistor Three

In our program the statement

10 INPUT A

sets up a variable in the computer’s memory with the symbolic name

A. We could have called it NUM1, or even FIRSTNUMBER.

The statement tells the computer to ask us to input a value for A

when we run the program. If we key in the number 3 the memory cell

allocated to A will contain the number 3. This value is then used in all

calculations involving A until we change its value.

In the statement:

30 LET S = A + B

S, A and B are the variables in the algebraic equation S = A + B. S is

our ‘unknown’ and will take the sum of the values of A and B. The

computer will work out the value of A + B and put the result in the

memory cell it has allocated to the variable S. The computer will not let

us input LET A + B = S (it will give us a syntax error), because the

variable to be given a value must come first. A + B is not a valid

variable name.

Variables are so-called because their values can vary or change,

according to the values we input, or in the course of a program, when

we instruct the computer to do something which causes the value to

change. For CONSTANTS, which are quantities which do not change

their value, we set up a variable in the same way, by giving it a name

and a value with a LET statement and let it keep the same value - a

variable that doesn’t vary!

Variable names may be of any length, but they must start with a

letter, and must only contain the alphanumeric characters (the letters A

to Z and the numbers 0 to 9). They can have spaces included, but this

is unwise, as it is easy to key in PRICE1, for example, when you

initialised a variable as PRICE 1. The computer will consider them to

be two different variables. The inverse video (white on black)

characters also cannot be used in variable names.

C7i Strings and String Variables

STRING

A STRING is a group of characters enclosed by quotation

marks.
The following are examples of strings:

“PETER”

“12345”

“JANUARY 1ST, 1982”
<< j jjj * # m

“REF:A2”

As well as numbers, computers can also handle text or groups of

characters. To define a group of characters as a string, we have to place

quotation marks at the beginning and end. This tells the computer, for

example, that the string “TOTAL” means the characters T.Q.T.A,L,

and not the numeric variable TOTAL, which is a number.

Strings can contain any character which prints on the screen, plus

spaces, but a string cannot contain quotation marks, because the

computer thinks it has got to the end of the string when it gets to the

second quotation mark.

Now that you know what a string is, we can tell you that strings can

be handled by string variables, just as numbers can be manipulated

with numeric variables.

STRING VARIABLE

A string variable is used to store strings. It consists of a single

letter (A to Z) followed by the $ sign. For example:

A$, Z$, M$

We allocate (or assign) strings to string variables with LET statements,

as with numeric variables. For example:

10 LET A$ = “STRING 1”

20 PRINT A$

The memory store allocated to A$ will contain the string ‘STRING 1’
(line 10).

When we RUN the program the computer will print the contents of

memory store A$ on the screen (line 20), i.e. STRING 1. Note the

string is printed without the quotation marks. The string is just the

characters inside the quotes.

22
23

C8: Operators and Operands

OPERATORS

Operators perform arithmetic, logical or conditional

operations on variables or numbers.

In our program the line:

30 LET S = A + B

uses the two arithmetic operators

= and +

OPERANDS

Operands are the variables or numbers which are

manipulated (i.e. operated on) by the operators.

In the line:

30 LET S = A + B

the variables S, A and B are operands.

C9: Format of Statements

BASIC is a ‘free format* language. The computer will ignore

extra blank spaces in a statement.

The following statements are equivalent:

10 INPUT A

10 INPUT A

10 INPUT A

The computer will automatically leave spaces after each line number

and a space after keywords. It will list programs with all the other

spaces you include between instructions and variables. It will ignore

them when you run the program.

C10: Keying in a Statement

Statement to be keyed in:

10 INPUT A Press [NEWLINE (ENTER)

If your computer system is set up and ready for use (see Section Bl) the

Ik] cursor will be in the bottom left-hand corner of the screen. You can

now key in the first statement.

Character or

instruction

to key in

Cursor Keys to

Press
What appears

on the Screen

m 0 1 1 0

0 0 0 10 [F|

inMt 0 1 10 INPUT [T] *

A 0* A 10 INPUT A m*

0* NEWLINE

(ENTER)
0

Entered line is

transferred to top

of screen

*

on Spectrum in CAPS mode

PRESS NEWLINE (ENTER) AFTER EACH STATEMENT

The [NEWLINE (ENTER-)] key must be pressed after each
statement has been entered.

10 INPUT A [NEWLINE fENTERTl

20 INPUT B [NEWLINE (ENTER] I

30 LET S » A + B ["NEWLINE (ENTERT1

40 PRINT S [NEWLINE (ENTER)]

Pressing the |~NEWLINE TENTER) | key informs the computer that the

statement is complete. The computer checks the line for mistakes then

transfers the statement to the top of the screen and returns the | K.1

cursor to the left-hand side of the screen, ready for us to enter the next

program line.

t^lat ^ne at toP °f screen now contains the
CURRENT LINE CURSOR:

This indicates the last program line entered and accepted by the

computer. It appears immediately after the line number'

10 G>] INPUT A

24 25

Cll: Correcting Errors

RTJBOUT (DELETE)

The RUBOUT (DELETE) key acts as a backspace, deleting

the character symbol or keyword immediately preceding (to

the left of) it.

As we type in a line we may press the wrong key. For example, we

might get:

10 INPUTS!

where we pressed S instead of A. To correct this we press

(DELETE) and we get:

10 INPUT m

RUBOUT

We may now continue and type in A.

The horizontal arrow keys move the cursor one character or

keyword to the left or right along a line as indicated.

For obvious reasons, these keys are also referred to as cursor control

keys.

To correct an earlier mistake on a line

(a) Use the arrow keys to move the cursor to a position immediately

to the right of the character to be changed.

(b) Press RUBOUT (DELETE) to delete the incorrect character,

and key in the correct character.

(c) Use the arrow key to return the cursor to the end of the line, if

you have more to key in. Otherwise, you may press NEWLINE

(ENTER) immediately. It does not matter if the I L 1 cursor is in

the middle of the line.

If you are keying in the first line of a program and there are no existing

lines at the top of the screen, pressing EDIT will clear the line.

If there are program lines at the top of the screen, pressing EDIT

clears the current line and brings down the program line marked with

the > cursor. Pressing NEWLINE (ENTER) sends this line up

again and clears the current line.

Exercises

1 Start keying in the first line of the program. Don’t press

NEWLINE (ENTER).

Play around with the cursor control keys and RUBOUT

(DELETE).

2 Delete the complete line.

3 Key in the first line and press NEWLINE (ENTER).

Key in the second line.

4 Delete the second line using EDIT and NEWLINE (ENTER).

5 Key in the second line. Key in the third line to read:

30 LET X = A + B. Press NEWLINE (ENTER)

Use EDIT to bring this line down again. Use the cursor control

keys to put the cursor to the right of X and delete it. Insert S.

Leave the cursor where it is, and press NEWLINE (ENTER) to

send the line to the top of the screen.

6 Key in the complete program.

C12: Commands

COMMANDS are direct instructions to the computer. They

are executed immediately. They do not need line numbers, as

they are not part of a program.

Commands give us direct control over the computer.

Examples are:

RUN

LIST

BREAK

SAVE

To delete a complete line

This can be done by using the “► key to get the cursor to the end of the

line, if you are not there already, and then using RUBOUT

(DELETE) repeatedly until the line is completely deleted and just the

j K [cursor remains. This is tedious on a ZX81, without the

Spectrum’s repeat key, especially on a long line. A better way is:

(1) Press EDIT

(2) Press NEWLINE (ENTER)

To execute a command, we key it in. If it is a command that is printed,

it will appear on the bottom line of the screen. This area of the screen

must be empty. Then press I NEWLINE (ENTER) |. Some commands

are executed instantly, without pressing NEWLINE (ENTER) (e.g.

BREAK), and are not printed on the screen.

Most commands are also used as instructions in programs. Some of

the commands that can be used as direct commands are not actually

very useful in this role. Equally, some that could be used in programs

never are. However, each command has a key role to play in the

26 27

BASIC language and we will deal with the individual commands as we

encounter them in the text.

You have already met the NEWLINE (ENTER), RUBOUT

(DELETE), and -► commands, and the j mode commands

(GRAPHICS and FUNCTION). Together with EDIT, RUBOUT

(DELETE) and BREAK, plus the f and | arrow keys, these are the

commands that don't print, and act instantly. All the others need

NEWLINE (ENTER) to be activated.

of the screen just type the line number and press NEWLINE

(ENTER).

For example:

10 NEWLINE (ENTER) 1

will delete line 10 in the program. You will see it disappear from the

screen.

C14: Listing a Program on the Screen

C13: Editing the Program
LIST

EDIT

The EDIT command copies the program line indicated by the

1 > 1 cursor at the top of the screen, to the bottom of the screen,

replacing any current line. The line brought down can then

be edited or changed.

EDIT may also be used for entering lines that are similar where only

the line number changes:

(1) Key in the line.

(2) Press NEWLINE (ENTER)-line goes to top of screen.

(3) Press EDIT - line copied to bottom of screen.

(4) Use RUBOUT (DELETE) to delete the line number.

(5) Key in new line number.

(6) Press NEWLINE (ENTER) - new line goes to top of screen.

The same procedure can also be useful with lines which only vary

slightly, i.e. perhaps only the line number and a variable are different.

If you can save keystrokes by bringing down a line and revising it, then

do so. The technique is as above, but after (5) you must use the cursor

control keys to shift the L-cursor along the line and use RUBOUT

(DELETE) to erase the variable (or keyword) that needs to be

changed. Insert the new character, and press NEWLINE (ENTER).

It k
These commands move the| | cursor in the entered program

at the top of the screen from one line to another. This enables

us to then copy down any line in the program for editing using

[edit] .

Deleting a line in the entered program

To delete a given program line which has been entered and is at the top

The program has been entered into memory. To produce a

listing on the screen of all lines accepted by the computer key

in:

LIST NEWLINE (ENTER)

LIST is a command that prints on the screen. It appears on the bottom

of the screen, and is executed when NEWLINE (ENTER) is pressed.

LIST N

Will list a program starting from program line N.

For example, if we key in:

LIST 30 fNEWLINE (ENTER))

our program will be listed from line 30.

We key in LIST, then the line number we want the listing to start at. If

we have a program that is longer than will fit on the screen, we use the

LIST (line number) command to display successive screenfuls of the

program. If the bottom line on the first screen is 210, for example, we

would use LIST 220 to get the next set of program lines. Listing a

program on the Spectrum which is larger than a screenful produces a

SCROLL? prompt. Answering this with anything other than ‘N’ or

BREAK scrolls the listing up so that the next screenful of statements
can be seen.

CIS: Running the Program

Our simple program has been keyed into the computer line by line and
entered into memory.

Let's see if it works. We give the computer the command RUN.

28 29

RUN

r RUN | | NEWLINE (ENTER)

The RUN command starts execution of a program at the
lowest numbered statement.

Run is a command and is keyed in. It appears at the bottom of the

screen. It will not be executed until [NEWLINE ('ENTER')I is pressed.

When we do this the program starts operating. The screen will go

blank and the L-cursor will appear at the bottom. (This will be a

C-cursor if you are using a Spectrum in CAPS (capital letter) mode,

using CAPS LOCK as we advised.) The computer is now running the

program and asking us to input a number for the variable A.

Key in the number QU and press I NEWLINE (ENTERTI . The

L-cursor appears again at the bottom of the screen. The computer

requests another number, to be assigned to the variable B. Kev in the

number QT| and press | NEWLINE (ENTER! 1 .

Our result (the number 8) is printed at the top left of the screen.

Notice the message that appears on the bottom of the screen. We can

also run the program from a line other than the first program line:

RUN N

RUN (Line Number)

This command starts execution of the program from the

specified statement (line) number.

RUN 20
will start a program at line 20.

Note that when the RUN N command is used all statements before the

specified statement number (N) will be ignored and any variables

defined in these statements will be considered by the computer to be

undefined because it has not RUN the lines. The program will not

work and an error message will result. All values of variables are
wiped out by the RUN command.

We can RUN the program as many times as we wish:

Key in RUN NEWLINE (ENTER) \ again

If the program has been run once and the message is at the bottom of

the screen, to rerun the program key in RUN. This overwrites the

message and pressing NEWLINE (ENTER) starts the computer

operating the program. The L-cursor appears to prompt for an input
again (C-cursor for Spectrum in CAPS mode).

The screen is now blank. We can get the program listing back very

easily:

Press NEWLINE (ENTER)

After running the program, the program listing re-appears at the top of

the screen if the NEWLINE (ENTER) key is pressed. The program

can now be edited if necessary.

C16: Error Messages

Our computer tells us it has finished running the program by giving us

a message. On the ZX81 this will be:

0/40

at the bottom of the screen. The Spectrum gives an expanded version

of the message:

0 OK, 40:1

This tells us that no errors were found and the program finished at line

40 (the last line). The number after the colon can be ignored in most

Spectrum error messages, as it refers to multiple-statement lines. We

shall not use these in this text. There is one case where it is 2, as we

shall see later.

These special diagnostic messages appear at the bottom of the screen

every time a program is run. If the program does not work a message

appears with the form:

E/N

E is a number or a letter indicating the type of error that has caused the

program to stop, and N the line number where the program halted due

to the error. The Spectrum adds a message briefly stating the cause of
the error.

We look up the meaning of E in the list of Error Codes in Appendix

II. This helps us to correct or debug the program, since we know what

sort of problem has occurred and which program line it happened at.

Exercises

1 Run the program on page 19 a number of times keying in

different values for A and B.

2 Press NEWLINE (ENTER) to get the listing. Change line 30 to
read:

30 LET S = A + C

30
31

Now RUN the program.

The error message 2/30 (on the ZX81) appears. On the

Spectrum we get 2: Variable not found 30; 1. So we have a type

2 error and the program stopped at line 30. A type 2 error means

we have forgotten to define a variable. We are now using the

variable C instead of B, but we have not yet given C a value, and

the computer could not complete the operation of line 30 due to

insufficient information.

Insert a new line:

25 INPUT C

and run the program again. It now works.

Why did the program originally stop at line 30?

Why do we now have to key in 3 numbers to make it work?

3 Add an extra line at the beginning of the program. Key in:

5 PRINT “PROGRAM ADDS 2 NUMBERS”

RUN the program, starting from different lines by using:

RUN

RUN 10

RUN 15

Why do you think RUN 15 does not work?

4 Edit the program to obtain the original version.

Cl7: How the Program Works

Line 10 tells the computer that a number must be

input and given the name A, (i.e. assigned to the

variable A). The computer reads the line and prints

an [T7| at the bottom of the screen,* reminding us

to input a number. The computer will wait until we

key in a number. The number is then stored in

memory cell A. The computer goes to the next line.

Line 20 tells the computer that another number,

to be assigned to the variable B, must be input, [l |

appears at the bottom of the screen* and the

computer waits until we key in a second number,

which is stored in memory cell B. The computer

goes to the next line.

Line 30 tells the computer that a variable S is to

be assigned the value of the sum of the variables A

and B. The numbers in cells A and B are added

10 INPUT A

20 INPUT B

30 LET S = A + B

*This will be a C-cursor if using a Spectrum with the GAPS LOCK facility used, as

Spectrum users must do throughout this text to get program listings which appear the

same as the ones in the text. Use the GAPS SHIFT and CAPS LOCK keys

simultaneously on switch-on, and remember that the C-cursor will appear instead of

the L-cursor. We will not mention this again.

and placed in cell S. The computer goes to the next

line.
Line 40 instructs the computer to output the 40 PRINT S

value of S to the screen. The computer looks for the

next line.

The computer can find no more statements to

execute in the program and gives a message 0/40

on the screen telling us that the program finished

with zero errors at line 40. The Spectrum gives the

same message, in the form 0 OK, 40:1.

The computer now waits for more commands.

C18: Naming the Program

5 REM “NAME”

Programs are named in a REM statement. The program name

is enclosed in quotation marks. The program is usually named

in the first statement in the program.

We need to give our program a name in order to:

(1) Differentiate it from other programs

(2) Store it permanently on cassette tape (SAVE it)

(3) Put it back into the computer from cassette tape in order to run it

(LOAD it).

The program name can be any combination of characters and any

length on the ZX81. On the Spectrum, program names for use with the

SAVE and LOAD instructions must start with a letter, and can only

have 10 characters in the name.

It is sensible to keep the program name short and relevant to the type

of program, although some programmers name programs after

themselves:
“PETER 1M

“PETER 2” etc.

Programs which undertake various kinds of statistical analysis could be
named:

“ STATS 1”

“STATS2” etc.

Programs which perform calculations for experiments in the laboratory
could be named:

“OPTICS 3”

“FRICTION”

“TITRATION” etc.

If spaces are used in program names, it is easy to misread them, or

forget that there should be a space. If the program name is not one

word, we can use an asterisk:

“PETER* 1”

“FOCAL*LENGTH” etc. (“FOCAL*LEN” for the Spectrum)

32 33

Program names and cassette tape codes should be recorded in a

DIRECTORY which enables us to access a PROGRAM LIBRARY

of programs stored on tape.

We need to name our program: List the program and add a line

which names the program. For example:

5 REM “SUMPROG”

or 5 REM “PROG*l”

could be used. We will call our program “ADDER”, so key in

5 REM “ADDER”

SECTION D: SAVING, LOADING AND LISTING

Dl: Saving the Program on Cassette Tape

We need to save programs on to cassette tape (the off-line storage medium

the Sinclair computers use) because when the power supply is switched

off (or disrupted - variations in the mains supply can affect the

computer) the RAM memory and the registers in the CPU are cleared

and we lose the program. The memory is said to be volatile. This means

we have to key it in again - not too bad for a 5 line program, but a 50

liner will take you an hour!

If we had made a copy of the program on to magnetic cassette tape

using the SAVE command we could have reloaded it into the computer

quickly, using the LOAD command. Tape storage is not the quickest

or most reliable method used for off-line storage, but it works, and has

the advantage of low cost. The ZX81 reads and writes tape fairly slowly

in computer terms, and a large program will take some minutes to

LOAD or SAVE. The Spectrum loads programs several times faster.

Software (programs) stored on tape is available for use when needed,

making it PERMANENT.

Software also has to be PORTABLE. Programs we write can be

used by other people with the same computer, or software available on

cassette can be bought.

SAVE

SAVE “NAME”

The SAVE command outputs the program and variables to

the cassette recorder. If the cassette recorder is in record mode

then a copy of the program will be made on the tape.

Spectrum users please note that the program name for SAVEing must

be 10 letters or less. The name can be in either upper or lower case (or

a mixture) but exactly the same name must be used to LOAD. It is

safer to choose to use capitals only.

SAVING THE PROGRAM

1 Check that the cassette recorder is plugged in (or has
good batteries).

2 Ensure it is connected to the computer, with the MIC-

MIC sockets being connected. See the important
Spectrum note below.

34 35

3 Set the TONE control on the cassette recorder to HIGH.

4 Set the volume control on the cassette recorder to 3/4 of

MAXIMUM.

5 Insert a new €12 computer cassette tape into the

recorder. Short cassettes are more convenient than long

ones for our purposes.

6 Run the tape through on FAST FORWARD and then

REWIND to ensure equal tension.

7 Set the tape counter to zero and run the tape forward five

revolutions (about 20 or 30 seconds).

8 List the program on the screen and printer.

9 Check the program is named (e.g. “ADDER”) in a REM

statement.

ZX81 Sequence

10 Type SAVE “ADDER” don't press NEWLINE

(ENTER) yet.

11 Press RECORD and PLAY buttons on the recorder.

12 Press I NEWLINE (ENTER) 1.

13 Watch the screen.

a) For five seconds it will be grey inversed by diagonal

white lines and if the sound on the TV is turned up

it will be a monotone.

This is the SILENT LEAD IN

b) For ten seconds a horizontal striped pattern appears

on the screen. This is the program going in. A

warbling sound is first heard, then half second

pulses.

c) The screen goes white and the message 0/0 appears,

telling us the computer has transmitted the program

to the cassette recorder.

The ZX81 does not know whether the recording is

successful.

We can only tell by later loading the program back

in.

Stop the recorder

14 Note the counter reading at the end of the program.

15 Run the tape forward five more revolutions of the

counter, ready for the next program.

Spectrum Sequence

IMPORTANT NOTE: YOU MUST ALWAYS TAKE THE

JACK-PLUG OUT OF THE EAR SOCKET OF THE

SPECTRUM BEFORE ATTEMPTING TO SAVE A

PROGRAM.

10 Key in SAVE “ADDER”.

11 Press ENTER. The Spectrum will print a message on the

screen which tells you to ‘Start tape’, i.e. press RECORD

(or record and play, depending on your cassette

recorder), and ‘then press any key\ Do so.

12 Blue and red lines (black and grey on a black and white

TV) will scroll up the border area of your TV screen. This

happens twice as the name of the program is recorded.

When the program is copied, narrow yellow and

blue/black lines roll up the border area. When the

recording is complete an ‘0 OK’ report appears on the

screen. Stop the recorder. Note the tape counter reading.

Your program should now be correctly recorded.

13 On the Spectrum, you can check this without wiping out

the program in memory first. Connect the EAR lead from

the Spectrum to the cassette player EAR socket. Rewind

the cassette to before the start of your recorded program.

Get into the E mode, and key in VERIFY, then enter the

program name between quotes. Press ENTER and start

the cassette on PLAY. The Spectrum displays on the

screen any other programs before the specified one that it

finds on the tape, printing their names on the screen.

14 When the program has finished playing back, an ‘0 OK’

message means the program was correctly SAVEd, and

‘R Tape loading error’ means the recording is faulty and

you should SAVE the program again.

15 Run the cassette on five more revolutions of the tape

counter, ready for the next program.

The sequence above assumes a tape counter on your cassette recorder.

Without a counter, the process of finding a program is more difficult.

To place a voice message on the tape, so that the tape is searched for

the voice giving the program name, will prevent the tape being

searched automatically by the computer, but it is one possible method.

If used, you should record your voice (most cassette machines have a

built-in microphone) stating the program name several times, then the

program name should be spelt out, the name stated again, and some

cue statement (‘saving starts now’) to let you know that after that point

only computer-generated noises exist. This will make finding the

program much easier, as the voice cues occupy a larger length of tape

than a single statement of program name.

The other alternatives are to place only one program on each tape (a

bit uneconomical!) or to leave very large gaps between tapes (30

seconds at least), so that you can search using fast forward/reverse and

are unlikely to miss the gap. This has the advantage that you can set

the computer to search through the tape program by program if you do

miss it. Larger programs should be placed if possible on a side of a

36 37

cassette by themselves. Short length cassettes are available (5 minutes a
side) to make this a viable option.

Exercises

1 Try a dummy run first. Do not press the recorder keys. Turn up

the sound on the TV until you can hear a hum. Awful, isn’t it!

Key in SAVE “ADDER” and press NEWLINE (ENTER).

(Press a key in response to the message if using a Spectrum).

Watch the screen and listen to the different sounds. When the

screen clears and the 0/0 message appears (0 OK, 0:1 on a

Spectrum), key in LIST NEWLINE (ENTER) to get the listing
back.

2 Now SAVE the program on to the tape.

D2: Deleting the Program from Memory

A sure way is to switch off the power - this is not recommended. This

should only be done if the computer needs to be re-set because it will not

respond to commands keyed in. It is much better to use the command
NEW.

NEW

The NEW command deletes any current program and

variables from the computer and clears the screen.

We use the NEW command before we LOAD a program into the

computer from cassette tape, to erase old programs and data from

memory. It is also used to do the same thing, if we have a program in

the computer and wish to clear it out to enter another.

There is another command that only affects the variables store, and

not both this store and the program store, as NEW does.

CLEAR

The CLEAR command erases all the variables in the current
memory.

CLEAR is similarly useless in the middle of a program - we would

merely have to re-define all variables.

With our program, if we RUN it, at the end of the run it will have in

the variables store the values of A, B and S. If we then SAVE it, these

values are SAVEd also. In our case this is irrelevant, since the INPUTs

will change them when it is used but often it is useful. We can store

data as variables in a program, and not have to re-input values (as long

as certain procedures are followed, as we will see later). This enables us

to have, for example, a telephone directory stored in variables. We

might then use CLEAR to wipe one list, and re-input new data or use

CLEAR before SAVEing the program to send to a friend for his use.

CLEAR acts slightly differently on the Spectrum (see page 458), but

for our purposes at this point the difference is insignificant. The major

function is the same. It is very easy to key CLEAR by accident on the

Spectrum, so be careful!

Exercises

1 RUN “ADDER”. Enter |CLS| [NEWLINE (ENTER) 1 to clear

the screen. Enter GOTO 40, then press NEWLINE (ENTER).

The computer will print the value of S. Now enter [CLEAR |

[NEWLINE (ENTER) | and then GOTO !40 (NEWLINE/

ENTER) again. We then get an error message 2/40 (2 variable

not found, 40:1 on the Spectrum) indicating an undefined

variable, because the computer has wiped the value of S. We will

deal with GOTO in due course. Just follow the instructions for

now.

LIST the program “ADDER”;on the screen. Press NEW and

NEWLINE (ENTER) 1 . The listing will disappear and the [K |

cursor appears. On the Spectrum, when NEW is followed by

ENTER, the screen will go black for a moment then become

white, with the words ‘© 1982 Sinclair Research Ltd’ at the

bottom of the screen.

Press I LIST | and then | NEWLINE (ENTER) |. What happens?

Why?

Key in the first line of the program and press NEWLINE

(ENTER). Switch off the power supply (by pulling out the jack-

plug). Switch it on again (by re-inserting the jack-plug). What

happens?

Re-enter “ADDER”.

D-3

CLEAR can be used as an instruction in a program, as can NEW, but

since NEW would merely wipe the program its use would be self-

defeating. Try it, if you like the idea of a program that self-destructs!

38
39

B3: Loading the Program from Cassette Tape

LOAD "NAME”

The command LOAD “NAME” waits for the cassette to play

the portion of tape with the program called “NAME” and

copies the program, with its variables into the computer’s

memory.

This means that we can start the tape, give the command LOAD

“NAME”, and the computer loads nothing into its memory until the

signal it recognises as NAME appears on tape. We can thus search a

tape for a program. The Spectrum will print on the screen the names of

any programs it finds on tape, before it encounters the specified
program.

LOAD " ”

The LOAD’ " ” (nothing between the quotes) command

LOADs the first program it finds on the tape.

LOADING PROCEDURE ON THE ZX81

1 Place the tape with the desired program in the cassette

player.

2 Position the tape via the counter to just before the

location of the required program.

3 Clear the computer’s memory using the ”NEW|

command if there’s a program in memory.

4 Set the TONE control on the tape recorder to nearly

Maximum (High), and the VOLUME control to %
Maximum.

5 Key in LOAD “ADDER” or the appropriate name.

Don’t press NEWLINE (ENTER).

6 Depress the PLAY key on the cassette recorder.

7 Press NEWLINE (ENTER).

8 A thin diagonal pattern will appear on the screen with a
single tone sound.

The pattern changes to broad horizontal stripes with

thinner diagonal stripes and half second sound pulses are

heard as the program is loaded in.

The screen clears and a 0/0 message indicates the
loading is a success.

9 STOP the recorder.

40

10 LIST and RUN the program.

11 Remove the tape when finished.

LOADING PROCEDURE ON THE SPECTRUM

1 Place the tape with the desired program in the cassette

player.

2 Position the tape via the counter to just before the

location of the required program.

3 Clear the computer’s memory using the NEW command

if there’s a program in memory.

4 Set the TONE control on the tape recorder to nearly

MAX (High), and the VOLUME control to % MAX.

5 Key in LOAD “ADDER”, but don't press ENTER yet.

6 Press the PLAY button on your cassette recorder.

7 Press ENTER.

8 When the Spectrum has found a program it will scroll

blue and red bands of colour up the border area. The

name of the program will be printed to the screen and

then the blue and red lines repeated again. If the correct

program has been located, then it will LOAD with a finer

set of blue and yellow lines scrolling up the border area.

If not, the border area will flash blue and red alternately

as it carries on to the next program on the tape.

9 When the program is correctly loaded, the phrase:

0 OK, 0:1

will appear at the bottom of the screen to indicate that all
is well.

10 Stop the recorder.

11 LIST and RUN the program.

12 Remove the tape when finished.

CAUSES OF FAILURE TO LOAD

1 Volume too low.

2 Volume too high.

3 Tone too low.

These indicate that the program has been played at the wrong

settings. New volume and tone adjustments will have to be

made. Some indications of these problems are visible on the

screen display of the ZX81, although systems vary in their

response. Appendix IV has a procedure for adjusting tone and

volume settings for the ZX81, as well as some general hints on

tape use. Experiment and get to know the patterns produced

during LOAD on your ZX81.

41

4 Loading started in the middle of the program. If a mistake has

been made with the start position, rewind the tape completely

and let the computer search for the program name.

5 The program is not on the tape. Check your directory, and the

writing on the cassette.

6 The program name is incorrect. Try again, making sure you

have spelt it correctly in the LOAD instruction. If you fail again,

run through the tape using the LOAD “ ” command. This will

load the first program each time. Stop the cassette player after

each load and LIST the program to check. (This is not necessary

on the Spectrum.) If it’s not the program you want, repeat for

the next program on the tape. The Spectrum will print the name

of all programs on tape if you use a LOAD “ZZZ” instruction,

i.e. a name that does not exist as a program name.

7 Pick up from stray electromagnetic fields.

This will show as violent interference on the screen, distorting

the patterns together with excessive hum on the sound. It could

originate from the TV itself, feedback between the recorder and

the computer or an external field. Switch off any radio that is in

the vicinity. Take out the jack-plug from the MIC socket of the

cassette player, as this will break the feedback loop that can exist

between the computer and the cassette player.

The Spectrum has fewer LOADing problems than the ZX81. It will

accept a much greater variation in both the volume and tone of the

signal. However, it is worth noting that if there are great differences

between the recorder the tape was recorded on and the one it is played

back on (variations in tape-head azimuth is often the main source of the

problem), then LOADing can be almost impossible, even on the

Spectrum.

As we noted at the beginning of the book, the Spectrum, unlike the

ZX81, offers a choice of upper and lower case letters. Ensure that if

you have used lower case ones in the program’s name, then you use

them again in the LOAD “xxx” command. The same applies if you

use upper case letters to name a program. Thus, a program named

“MATHS” will not LOAD with the statement: LOAD “maths”.

Some further information concerning the use of cassette tapes, and

advice for the ZX81 if problems are encountered is given in Appendix

IV.

Exercises

1 Load the program “ADDER”. LIST and RUN it.

2 Delete it from memory, using NEW.
Try loading it with different volume and tone setting.

Estimate the volume and tone ranges for which it will not load. If

you have a ZX81, you can do this by watching how the screen

patterns change when you change the settings while the program

is loading. Read Appendix IV.

D4: Listing the Program on the Printer

LLIST

LLIST lists the program currently in the computer memory

on the printer, starting from the first program line.

LLIST N

LLIST N lists the program on the printer starting from line

N.

We can stop the listing by pressing [BREAK! (BREAK needs CAPS

SHIFT on the Spectrum). This stops the listing with an error message

D/line number on the ZX81 and D BREAK - CONT repeats 0:1 on
the Spectrum.

It is important that you keep a listing or printed record of all the

programs you write or use. The listings are a great help in debugging

programs (both under development and if there are problems

discovered later). We can key the program back in from this listing, if
necessary.

Printouts also form part of the documentation for a program and

should be pasted into a notebook. Printed records of program results

can also be kept using the COPY command.

Exercises

1 LLIST the program “ADDER” on the printer.

2 Try stopping the listing with the BREAK key. The listing cannot

be continued by pressing CONT (try it). On the Spectrum,

despite what it says, this doesn’t work. The screen just goes

blank. Don’t worry. Press BREAK again.

3 List the program on the screen. Use the COPY command to list

the program on the printer.

What is the difference between the two listings obtained with
LLIST and COPY?

42 43

D5: Program Libraries and Directories
We will introduce flowcharts in Section G.

LIBRARY DIRECTORY LAYOUT

A collection of programs stored on cassette tape. For example:

COMPUTERLAB PROGRAM LIBRARY

or Your own program library.

Notice that programs can also be stored on magnetic discs and in
ROM memories.

DIRECTORY

The list of program names in the library together with

important information about them. Another name for a
directory is CATALOG.

You should keep, in your notebook, or a special book, a directory of all

programs you have entered and saved on tape. This will seem a bit

pointless when you only have a dozen or so, but you will appreciate the

need to be systematic when you accumulate a large number.

PROGRAMS YOU WRITE

Each program you write should be

1 Named.

2 Saved on a cassette tape.

3 Listed on the printer.

4 Documented.

5 Catalogued into the Directory of your own program
library.

A typical layout for the Directory Section of your notebook
would be:

Program Name:

Cassette Name:

Location:

Program Length:

Date Created:

Author:

Function:

MOONLANDER

GAMES 3

100-120
30 lines

18.5.82

PAUL NIXON

Lands a spaceship on

the moon

WRITING ON THE CASSETTE

There is a label on each side of the cassette. Write on each
side:

1) Cassette name or code.

2) Date.

3) Program names as they are copied into it. Make sure

these are correctly spelt!

Your directory should provide you with the more detailed

information, such as precisely where the program is to be
found.

DOCUMENTATION

The complete collection of information about the program or

file, written on paper. The information should include:

1 What the program does.

2 How it does it.

3 A listing.

4 A flo well art.

5 How to use it.

6 When it was written and by whom.

44 45

SECTION E: IMPROVING THE PROGRAM

El: Adding Comments

REM

The REM statement is used for adding comments to a

program. All REM statements are ignored by the computer

when the program is RUN.

These comment statements are for the users* benefit only.

They contain information in the text of the program which

explains what the program is doing. For example:

REM "THIS PROGRAM ADDS TWO NUMBERS

KEYED IN AND PRINTS THE RESULTS"

Notice the use of the asterisks to separate the text from the
instruction.

100 REM "END OF PROGRAM"

The complete program including all REM statements appears on the

screen or printer when using the LIST and LLIST commands.

Our saved program so far looks like this:

5 REM “ADDER”

10 INPUT A

20 INPUT B

30 LET S = A + B

40 PRINT S

Let us add some additional REM statements:

6 REM "THIS PROGRAM ADDS TWO NUMBERS

KEYED IN AND PRINTS THE RESULT"

60 REM "END OF PROGRAM"

Key these extra statements in. LIST the program and RUN the
program.

Do not worry about the line numbers not being in intervals of 10.

We will renumber the program when we have added all the extra lines.

E2: Using the Print Statement

PRINT

In our simple program we will use the PRINT statement:

a) To print messages and instructions to the user on the
screen:

7 PRINT “INPUT TWO NUMBERS”

The message INPUT TWO NUMBERS is a string, and

will be printed without the quotes.

b) To print the numbers keyed in and the result:

40 PRINT A; “ -f ”;B;“ = ”;S

A and B are the names of the variables to which the

numbers keyed in are assigned, and S is the variable that

stores the sum of A and B, i.e. the result. Variables do

not need quotes to be printed.

The semicolons (;) tell the computer that we want close

printing, with each print item (character or variable)

directly after the last, with no spaces between. The

inverted commas (quotes) enclosing the symbols + and

- means we want those symbols printed.

c) To leave spaces between lines printed on the screen:

8 PRINT

The PRINT instruction used on its own prints an empty line

on the screen.

Note that we have changed line 40 from what it was previously. Our

program now looks like this:

5 REM “ADDER”

6 REM "THIS PROGRAM ADDS TWO NUMBERS

KEYED IN AND PRINTS THE RESULT"

7 PRINT “INPUT TWO NUMBERS”

8 PRINT

10 INPUT A

20 INPUT B

30 LET S = A + B

40 PRINT A;“ + ”;B;“ - ”;S

60 REM "END OF PROGRAM"

Key in the new lines and RUN it.

E3: Adding a Loop

GOTO N

The statement GOTO N transfers program execution to the

specified line number, N. For example:

50 GOTO 7

When we insert line 50 into our program we can see that, after printing

the result on the screen, line 50 sends the computer back to line 7 to

execute the program again from that line, and as soon as the computer

reaches line 50 again it is sent back to line 7 once more.

We have constructed a LOOP. The program is going to carry on

looping forever unless we can pull out of it.

46 47

Our program now is:

5 REM “ADDER”

6 REM * *THIS PROGRAM ADDS TWO NUMBERS

KEYED IN AND PRINTS THE RESULT**

7 PRINT “INPUT TWO NUMBERS”

8 PRINT

10 INPUT A

20 INPUT B

30 LET S = A + B

40 PRINT A;“ + ”;B;“ - ”;S

50 GOTO 7

60 REM **END OF PROGRAM**

Key in line 50. RUN the program. When you are tired of inputting

numbers, read on.

E4: Stopping the Program

We need to know how to get out of the input loop between lines 7 and

50. The program will wait for an input of a number at line 10 INPUT

A. The 1 L | cursor will appear on the screen.

To pull out or stop the program at this stage key in | STOP

[NEWLINE (ENTER)]. STOP is a command we input directly, like

RUN.

STOP

On the ZX81 the STOP command stops a program with the

message: D/line number, and on the Spectrum we get H

STOP in INPUT (Line number): 1.

The line number refers to the program line the computer

was executing when it was stopped.

Our program will give D/10 as the message (H STOP in INPUT 10:1

on the Spectrum). We can cancel the STOP command and continue

the program with the CONT command.

CONT

The CONT command used after the STOP command will

continue the program from the line the program was stopped

at.

48

Key in PcONt] NEWLINE (ENTER) to continue the program. Note
the Spectrum prints CONT in full as CONTINUE.

Exercise

Run the program “ADDER”.

STOP the program when the first | L [cursor appears.

CGNTinue the program, and input a value for A.

STOP the program when the second Q7| cursor appears. Note that

the line number is different in the message that appears on the bottom
of the screen.

CONTinue the program.

E5: Testing for a Condition

In a program we can make decisions which will affect what the

computer does next. A decision is made on the basis of whether a
CONDITION is true or false.

CONDITION

A condition has the form (X) (condition) (Y) where X and Y

are numbers, variables or expressions and the condition is a

conditional operator. We shall use only the = (equality)

operator for the moment. The following are all conditions:

X = Y

A = 23

B = 2*3

Conditions are tested and the next action determined by the result of

the test with the IF and THEN statements used together.

IF - THEN

An IF - THEN statement has the form:

IF (condition) THEN (instruction)

For example: IF A = B THEN PRINT “EQUAL”

IF A = 0 THEN LET A = 3

The instruction can be any valid instruction. The statement
means:

IF (the condition is TRUE) THEN (perform as instruction).

IF (the condition is FALSE) the computer ignores the

instruction after THEN and goes to the next line of the
program.

49

In our simple program we can use the IF - THEN statement to insert

in the program a conditional test which will stop the loop, without

using the direct commands which we used in the last Unit. To STOP

the program in the same way as with a direct command we can insert

another line:
15 IF A = 0 THEN STOP

This tells the computer that IF A - 0 (if it is TRUE that A is equal to 0)

THEN it should STOP. IF A is any other value (if it is FALSE that

A = 0) it ignores the THEN STOP instruction and moves to line 20.

Enter this line into the program. RUN the program.

Enter different non-zero values for A to see that if A is not zero then

the program continues as before. Enter .000000001 to see that only if

A is exactly zero will the STOP instruction be executed. Input 2 for B,

and notice that the result is given as 2. This is due to the fact that

calculations are only performed to a certain degree of accuracy.

Enter .0000001 for A, and input B as 2. The computer returns

2.0000001 as the value of S - the number is within the limits of

accuracy.

Now enter 0 for A. The program will stop, just as when we entered

STOP as a direct command. Notice, however, that the message at the

bottom of the screen is different. We get the message 9/15 on the ZX81

(a STOP statement, 15:2 on the Spectrum).* The message is different

because STOP in a program means ‘if the CONT command is

received, proceed with the next program line’, since if it continued with

the same line it would just STOP again! As a direct command,

however, STOP means ‘if the CONT command is received, start with

the same program line’, so that the computer does not miss out a

program line.

Now we have some extra control over the program, but it is still not

satisfactory. We used IF A = 0 because in this program it is not a value

we are interested in seeing added to B (a value used in this way is

known as a DUMMY or SENTINEL VALUE - a value just used as a

signal to the computer which would not need to be entered in the

course of normal inputs). This stops the program and we can continue

it, but the program just goes back into the loop. We need a method of

proceeding out of the loop to end the program, or continuing with more

program lines.

We can do this with a STRING CONDITION. The conditional

operators can also be used to express relations between strings - either

string variables or simple strings

We insert the following lines:

50 PRINT “RUN PROGRAM AGAIN ?(YES/NO)”

55 INPUT A$

56 IF A$ - “YES” THEN GOTO 7

*On the Spectrum, the statement after the THEN in an IF-THEN statement is
treated as the second statement in the program line. This is why we get 15:2, meaning
line 15, statement 2. This is the only instruction used in the main text of this book
(before Unit W2) where the statement number will not be 1 in an error message.

When the program gets to line 50 it will print out the message, and

then put the [l] cursor at the bottom of the screen. Because it has been

told that a string input is to come, the cursor has quotes either side:

‘‘ fT7| ”. There is no need to type quotes. Whatever characters are

typed in will be stored as A$. The string is entered by pressing

NEWLINE (ENTER) after keying in the characters. Line 56 tells the

computer to check if the characters in A$ are the same as the characters

of the string “YES”. If they are it goes to line 7. If they are not the

program will continue to line 60. Notice that any string other than

“YES” will cause the program to continue to line 60.

Exercises

1 Delete line 15 in our program, which we no longer need.

2 Insert the new lines 50, 55 and 56.

3 RUN the program. Enter “YES” in response to the string input

cursor and see that the program loops back to line 7.

4 Next enter “NO” to see that the program goes to line 60 and

gives the message 0/60 (0 OK, 60:1 on the Spectrum). Run the

program again. This time enter anything other than “YES” or

“NO”, to see that the program goes by default to line 60 if

anything other than “YES” is entered.

5 Experiment with the string input. What happens if you press

NEWLINE (ENTER) without inputting anything? What

happens if you try to key in quotes around the string?

6 LLIST the program on the printer. The development of our

program is complete, and we have run it to see that it works. It

remains to renumber the lines, and this is easier to do if we have
a listing.

E6: Final Edit and Saving

Our program “ADDER” is complete and works. We need, however,

to renumber the lines. The procedure for this is as follows:

1) Using the listing from the printer, renumber the statement lines

in tens at the side of the old number. You can also count the

number of lines in the program on the screen display, and

multiply by ten to get the new highest line number. For our
program, this will be 120.

2) a) List the program on the screen.

b) Use the f and | cursor control keys to bring the current

line cursor | > 1 to line 60 (the bottom line of the program).

c) Press EDIT and pull line 60 down to the bottom of the
screen.

d) The new HIGHEST line number is 120.

e) Change 60 to 120.

50 51

f) Press NEWLINE (ENTER). Line 60 remains, but it is

duplicated by the new line 120.

g) Delete the old line 60 by entering 60 and pressing

NEWLINE (ENTER).

h) Change each line number in this way, going from highest to

lowest.
i) Lines that contain other line numbers must have these

changed to their new numbers. In our program we must

remember to change line 56 to:

90 IF A$ = “YES” THEN GOTO 30

where 30 is the new line number corresponding to the old

line 7.
j) Rename the program “ADDER2”, at the same time as you

charge the line number of line 5 to 10. This program is

different from the original version, and must be given a

different name both for our reference, and the SAVE and

LOAD operations.

k) Run the program to check that it still works, and that we

have all the lines, with any GOTO (line number)

statements correctly renumbered.

l) LIST and LLIST the program.

m) SAVE “ADDER2”.
n) Write the name of the program on the tape cassette, along

with the tape counter readings.

o) Put details of the program in your directory.

p) Stick the listing of the program in the notebook you are

using for documentation.

SECTION F: A GAME INTERLUDE

FI: The Program Library

In addition to the many programs and subroutines in the main body of

the text, there are additional applications and games programs in the

Program Library (Appendix VI). Our main objective is to enable you

to write your own programs, and the programs in the text have been

used to illustrate the use of techniques. Some are functional (do

something significant) and some are just illustrative. You don’t have to

key all the programs in the text into the computer, but you must

understand them. However, you should key in all the shorter programs

since it’s important to see how different types of program operate in

practice. Analysing the longer programs is vital, even if you don’t key

them in. The use of flowcharts (to come in Lesson G) is helpful for this.

There are also suggestions for programs you should write, to get

practice in writing programs to perform tasks, after units dealing with

specific techniques.

The programs in the library are examples of applications and games

programs, plus a number of subroutines for some of the manipulations

commonly required in programs. You can key these in at any time if

you want to see how the program works, find the program useful, or

want to play the game. Once keyed in you can SAVE them on cassette

and LOAD them back in quickly. None of the programs are very long,

since it is difficult to analyse long programs, and this is what we want

you to do. Keying in a program from a listing doesn’t teach you

anything about programming, nor does running it. Writing or

modifying a program does! We hope you find the programs

entertaining or useful, but please treat them as a source of ideas and

illustrations about programming, not as a fixed set of optimum

solutions. Programs can always be improved!

Be careful when keying in programs, especially if you don’t

understand how they work. (It might be better to work this out

first - because, to labour the point, that way you’ll learn something.)

The S-cursor will mark some errors in lines for you and stop you

entering them, but there are always other problems you can introduce.

Check through your listing for errors and missing lines (surprisingly

easy to do, even with numbered lines) before you run the program.

You must also be careful to check that any necessary alterations have

been made to the program if you are going to run it on a Spectrum, as

noted in Unit W2. These are mostly minor but can be crucial.

F2: A Game to Key In

You have now spent a lot of time working through the essentials of your

computer system and its BASIC, and you probably have the feeling

52 53

that thus far you haven't seen anything to persuade you that computers

are particularly exciting machines. Far from being impressed by their

capabilities, you may well be thinking, ‘What's so good about a

computer if you need to do all this to get it to do something that I could

do in my head when I was six?' Well, the following program may not

be earth-shattering, but it does in fact reveal a fairly complex set of

computer operations, as well as providing amusement. The program is

called “BUG" and it enables you to play a game that consists of

dropping bricks from a height to squash the ‘spider’ (an asterisk)

scurrying along below. If you have a militaristic or SF streak in your

nature, or are an arachnid lover, feel free to change the name to

“BOMBER" or whatever (in line 5). Whether you will enjoy it more

by pretending you’re napaiming Venusians is your affair. It won’t

alter how the program works!

To play the game, however, you first have to key it in. You won’t

understand at this point how it works (and won't for a few chapters

yet), so you have to rely on keying it in exactly as listed. Like all the

programs in the text, this one will look somewhat different on the

screen or in a printer listing, since for clarity we have not reproduced

the printer listings exactly, since printouts tend to contain broken

words (when one line on the screen is full and the computer runs on to

the next) and other possible confusions. Check each line carefully

before you press NEWLINE (ENTER), and pay special attention to

the punctuation. Notice that there are 2 spaces before the asterisk

(spider) in line 50, and 3 spaces either side of the < = > (brick

dropper/intergalactic space hod) in line 60. If you have any difficulty

finding the right modes and keys for the characters you need, refer to

the list in Section B (ZX81) and Unit W1 (Spectrum). It is very easy to

end up typing a keyword instead of inputting it directly when you are

keying in a listing (typing T,0 instead of inputting TO, for example).

If you do this it is not clear why you get the [S] cursor indicating an

error, since the line looks the same as the listing, so be warned.

ZX81 Users’ Notes

The graphic character in line 160 is an inverse asterisk, (SHIFT B in

Graphics mode) and in line 190 the characters are the SHIFTed

graphic on the T key, the asterisk again, and the SHIFTed graphic on

the Y key. The comments in square brackets are intended to be helpful,

not to be entered!

Spectrum Users’ Notes

Line 60 has an inverse video asterisk. To get this, key CAPS SHIFT

and the 4 key to get INV. VIDEO. Then input the asterisk. Use CAPS

SHIFT and the 3 key to get TRUE VIDEO, i.e. normal black on

white, back. If you don't return to normal video, the quotes will be in

inverse, and so will everything after it.

Line 190 has the unshifted G mode graphic on the 6 key, and then

the CAPS SHIFT graphics on the 8 key and the 6 key as the graphics

string.

5 REM "BUG"
10 LET S=0
20 LET B=10
30 FOR N=i TO 12
40 LET 0=3
50 PRINT AT 20,0-2?" *"
60 PRINT AT 0? B-3?" <=>
70 IF INKEY$ = "6" THEN GOTO

150
80 LET B=B+<3 AND INKEY$ = "<

AND B<28>-(3 AND INKEY$ *
115** AND B>3>

90 LET 0=0+ INT < RND *2+1)
100 IF COO THEN GOTO 50
110 CLS
120 NEXT N
130 PRINT "YOU SCORED "?S?

" OUT OF 12"
140 STOP

150 FOR F=4 TO 20 STEP 4
160 PRINT AT F,B+l?"H"? AT

F, B+l?" "
170 NEXT F
180 IF B+l <> 0 THEN GOTO 50
190 PRINT AT 20,0-1? "BM"? AT

21,0-2?"SPLAT"
200 CLS
210 LET S=S+1
220 GOTO 120

C2 Space,*3
[3 Sp,<=>,3 Sp3

[SCORED,Sp & Sp,OUT]

[Inverse *3

is one character]

When you've got it all keyed in, LIST it to check it through again.

Check the first screenful, then (on a ZX81) LIST 170 to get the rest of

the program (with a line that was on the first screenful to keep your

place). LLIST it on the printer.

Key RUN then NEWLINE (ENTER) to play. The keys 5 and 8

move you left and right respectively across the top of the screen. They

are chosen for the direction of the arrows printed on them. Key 6 will

drop the brick. If you hit the spider it goes splat and you score a point.

You have to hold the keys down to ensure that the computer will read

the keys and perform the right operations. This is because it reads the

keys only once in each pass through the loop (lines 50 to 100), and

might miss the input otherwise.

When you've played the game a few times, SAVE it on to tape and

catalogue it.

54 55

PART TWO

&1GTION G: PROGRAMMING METHODS I

Gl: Programming

Now that you can operate your computer and have written a short
program we must look in greater detail at the activity we call
PROGRAMMING and study how:

COMPUTERS SOLVE PROBLEMS

To enable them to do this we engage in the two main activities of

programming:

1 PRODUCE THE METHOD FOR SOLVING THE

PROBLEM

2 PRODUCE A WORKING PROGRAM

The method for solving our problem is called an ALGORITHM. An

algorithm is like a cookbook recipe, and is written down in steps in a

brief English style we call PSEUDOCODE, and the method by which

we arrive at the recipe is called STRUCTURED PROGRAMMING.

We break the problem up into smaller sub-problems or sub-tasks in

a step by step, modular fashion, starting from the simple initial

statement of the problem and working down to lower levels of greater

complexity (i.e. in a TOP DOWN manner). As we refine our problem

our steps become more like the operations the computer can perform.

Our final description of the lower level of the algorithm will be in terms

of the control and other structures of the language.

To help us produce the algorithm we use STRUCTURE

DIAGRAMS. The simplest of these is a TREE diagram. The

pseudocode description of the algorithm is easily written down from the

descriptions of tasks in the tree diagram. We cannot

key the pseudocode description of the algorithm into the ZX81 or

Spectrum because it will not understand it, and there is no means of

doing it anyway. We have to translate each section of the pseudocode

into its equivalent in the BASIC language, which the computer

understands, to produce a PROGRAM.

For the computer to be able to run the program successfully and

produce the results we require, there has to be a LOGICAL FLOW to

the program. This is often difficult to see from the structure diagram,

and so we use another diagrammatic technique to illustrate the flow of

control through the program, i.e. determine the order in which the

program modules or sub-programs are processed and the order of

coding the specific instuctions within a module.

This technique uses FLOWCHARTS. These are important for

documentation purposes and are in common use. We will describe

them shortly.

59

Producing a working program involves running and DEBUGGING

(correcting errors in) our first effort. We then have to TEST the

program with sample data and finally DOCUMENT it. In this first

section on methodology we shall consider problem solving and coding

the algorithm in BASIC in more detail.

You will see that the first half of the activity we call programming is

LANGUAGE INDEPENDENT. Having produced our problem

solving method - the algorithm - we can code it into any computer

language we wish. We need to know the language thoroughly and how

the fundamental programming structures we have used in the

algorithm - decisions, loops, subroutines, subprograms,

functions - can be implemented in that version of the language which

runs on the computer we are going to use.

In this book we are using the ZX81 or Spectrum computers. The

versions of BASIC are slightly different. All that this means is that

whilst the algorithms to be coded for both machines will be the same,

the final programs may be slightly different.

Our algorithms and their representation in pseudocode and

flowchart form are thus PORTABLE from one machine and language

to another.

Good coding habits are also important. There are good and bad

ways of turning the solution to a problem into a working program.

Style, presentation, ease of understanding, modularity, efficiency are

all important. Throughout our book the emphasis will be on correct

problem solving techniques and good programming practice, while you

gain a thorough knowledge of BASIC.

Here is our first rule of programming:

PROGRAM CORRECTLY FROM THE START

Remember-bad habits die hard!

The material in this Section may initially appear dense and difficult

to follow. Work through the text carefully, and refer back to this

Section as often as you feel necessary, when each of the topics covered

in the following Sections (dealing with the essential groundwork of the

BASIC language) has been introduced. The exercises given in the text

should be used to put into practice both the specific techniques involved

and the general approach to programming presented here.

G2: Problem Analysis

Producing the algorithm, or method of solving the problem, is often the

most difficult part of programming because it involves the most work.

From the start careful planning and organisation are absolutely

essential. The task is simplified when a structured design method is

used, coupled with a diagrammatic representation of the algorithm

using a structure diagram or flowchart. The actual coding of the

program in BASIC using the available language instructions is then a

straightforward matter.

To produce the Algorithm we must:

1.1 STATE THE PROBLEM

1.2 RESEARCH THE PROBLEM

1.3 DESIGN THE ALGORITHM

1.4 DESCRIBE THE ALGORITHM IN PSEUDOCODE

AND FLOWCHART FORM

Let us now consider each of these steps.

1.1 State the problem fully

1.1.1 STATE THE PROBLEM

1.1.2 UNDERSTAND WHAT IS TO BE DONE

To solve any problem we must know what the problem is and what is to

be done. We later work out how to do it. A complete statement of the

problem should include:

(i) What information or data is to be input.

(ii) What answers or results are to be output.

(iii) What operations are to be performed on the data.

At this stage a precise description of (iii) may not be available.

EXAMPLES

Problem: Write a program which will print out the sum and

average of five numbers input at the keyboard.

Problem: Using the computer produce a telephone directory to

contain up to fifty entries, which may be updated and

assessed in an enquiry mode.

In the first problem the input data, output data and operations are easy

to see. The second is much more complex and needs more researching

and information.

What we are trying to do in 1.1.1 and 1.1.2 is to initially specify the

problem as exactly as possible. When we analyse the problem further

we may have to go back and ask for more information i.e, a more

detailed specification.

60 61

1.2 Research the problem

1.2.1 RESEARCH AND ANALYSE THE PROBLEM TO

SEE HOW THE COMPUTER CAN HANDLE IT

1.2.2 IDENTIFY ALL FORMULAE AND RELATIONS
INVOLVED

1.2.3 IDENTIFY ALL DATA INVOLVED

Here we start to determine how the computer may solve the problem.
We need to find out and write down:

(i) What lormulae and expressions are to be used.

(ii) What kinds of data are involved — numeric, striner etc.

(ni) What functions are involved.
(iv) What is input and output data.

(v) What is the form of this data.

(vi) How much data there is.

(vn) What processing is to be done and how many times.

It is useful at this stage to start to create a data table (a table of variables,

constants and counters), to record how we are going to store the data!

Other questions we will ask when we are a little more experienced are:
Have I solved a problem like this before?

Can I use my solution or modify it?

Has anyone else solved it?

Where can I find their algorithm or program?

JHE FACTS OBTAINED from researching
THE PROBLEM SHOULD BE JOTTED DOWN

We can now begin to design the algorithm in a structured manner.

1.3 Design the algorithm using structured methods

1.3.1 BREAK THE PROBLEM DOWN INTO

SUB-PROBLEMS

1.3.2 USE A STRUCTURE OR TREE DIAGRAM TO
HELP

1.3.3 CLASSIFY MODULES OR PART MODULES AS
- INPUT

- PROCESSING
- OUTPUT

1.3.4 USE FUNDAMENTAL CONTROL STRUCTURES
1.3.5 SET UP A DATA TABLE

1.3.6 REFINE THE ALGORITHM UNTIL CODING

!NTO BASIC IS AN OBVIOUS EXERCISE

Structured programming means designing the algorithm in a top

62

down, modular fashion, with step by step refinement of the solution

starting from the single statement of the problem which we place at the

highest level. We break the problem into sub-problems at successive

lower levels. Each sub-problem or module is one that can be solved

individually. Structure diagrams or tree diagrams are useful as a

representation of this refinement process.

G3: Structure diagrams

These enable us to break down the problem into distinct tasks and sub¬

tasks which eventually become simple enough to be coded directly in

BASIC instructions. One form of these diagrams is TREE

DIAGRAMS. The tree diagram has its trunk at the top of the page.

We call this BOX 1 and give it the title: TASK TO BE DONE. We

could have called it 'problem to be solved’.

For example, make a cup of tea or find the average of five numbers.

We next break down the task into things to do. These are sub-tasks

and each has its own box. For example:

BOX 1.1: First thing to do

BOX 1.2: Second thing to do

Each sub-task is broken down into further sub-tasks: 1.1.1, 1.1,2 etc,

each with their own boxes, the things to do placed in them becoming

progressively more exact and simple.

Breaking down a task into a tree diagram:

The sort of programs you will start to write in BASIC are sequential,

that is to say things are done one after another, so you need to be able

to indicate that the program should first do one thing, then a second,

then a third . . . and so on. You do this by drawing the boxes which

63

contain the tasks to be done in a straight line across the page next to

each other for example:

1.2.1 1.2.2 1.2.3

The numbers contained within each box identify where the box is

placed on the tree. Take [1.2.3 1 for example:

The first digit shows it comes from the first level 1 ‘What is to be

done’.

The second digit ‘2’ shows it has come from the second level box 1.2

‘Second thing to be done’.

The third digit ‘3’ shows this box 11,2.3 [is the third sub-task in the

sequence derived from [TT2~1 which in turn is derived from [T) . Into

the boxes go brief statements of the actions needing to be performed.

These are general statements at the top of the tree, e.g. ‘Get Sum of

numbers’, but become more specific at each lower level, so that ‘Get

Sum’ is broken down in the operations needed to produce the result

‘Get Sum’, e.g. ‘Input first number’, ‘Input second number’, ‘Add

the two numbers’. Finally the instructions become detailed enough to

form our English language ‘pseudocode’ which can be written out,

ready to be translated into BASIC instructions.

AN EXAMPLE OF TREE DIAGRAM DESIGN

Here is an example to try out. Suppose we have a robot with arms, legs

and eyes which we want to program to make a pot of tea. Our major

task for the robot is:

1
Make a Pot
of Tea

Each of these sub-tasks is still far too complicated for our robot to do.

We must break the problem down further. Breaking down 1.1 into sub¬

tasks we get:

The robot also needs to be told how to fill the kettle so we break this

down as:

On the next page is a complete tree diagram. Certain things are still

wrong with this algorithm for our robot, but it does show you how a

problem can be broken down.

G4: Classifying Program Modules

This can be broken down into sub-tasks which we put in order across

the page:

Most computer programs involve:

INPUT

PROCESSING

and OUTPUT

activities.

As we are designing our programs and forming modules, it becomes

evident from our pseudocode description of the algorithm which of the

above functions the modules should have. Depending on the problem

and the result of our algorithm design, modules may be separately

64 65

B
o
il

W
a
te

r
P

u
t

T
e
a

in

P
u
t

W
a
te

r
th

e

P
o
t

in
to

th
e

P
o
t

designated input, processing, and output functions or may have these

functions nested as sub-modules.

Module I
DATA
INPUT
Module

Module 2 Module 3
PROCESSING DATA
Module OUTPUT

Module

OR

G5: Control Structures

Control structures are the statements or groups of statements

(modules) in a program and algorithm by which the order of processing

is controlled. Using them properly is the most important part of

programming.

BASIC is a line numbered language. The order of processing in a

program is from the lowest line number in the program sequentially

through to the highest, unless this is changed by using a control

structure. Control structures link the different modules in a program

together and are themselves modules. They will be dealt with in depth

in the remainder of this section.

To make our algorithm language-independent we can write them

using a standard notation in pseudocode for the particular control

structure together with its flowchart description. When we code the

structures into the BASIC language the instructions used and the order

of statements in the structure may be slightly different according to the

version of BASIC and how ‘structured’ it is (i.e. how easily it

accommodates these control structures). The structures we will study

in BASIC are:

(i) DECISION STRUCTURES

(ii) TRANSFER STRUCTURES

(iii) LOOPS

(iv) SUBROUTINES

(v) NESTED STRUCTURES

(vi) SUBPROGRAMS

66 67

DECISION STRUCTURES

Computers make decisions by comparing the value of one variable

against another. For example:

IF A = 0 THEN (do something)

IF AS = “YES” THEN (do something)

To make decisions they use relational (or conditional) and logical

operators, like the equals operator above.

Sinclair BASIC uses three decision structures:

Simple decision

Double decision

Multiple decision

As a result of these decisions control may be transferred to another

program module, or local processing within the structure may take

place.

TRANSFER STRUCTURES

These structures involve:

(i) UNCONDITIONAL TRANSFER

which is a direct transfer of control using a GOTO (line number)

statement. Transfer is to another program statement or a module

consisting of a group of statements. GOTO is a very powerful structure

and must be used with care.

(ii) CONDITIONAL TRANSFER

in which transfer of control to another segment is made as the result of

a decision: i.e. IF (condition is true) THEN GOTO (line number).

These program structures are discussed further in Section H.

LOOPS

The need for the repetition of simple tasks is one of the fundamental

reasons computers exist. Loop structures are incorporated in most

computer programs. A loop is a sequence of repeated steps in a

program. This repetition must be controlled. We shall see in Section L

that repetition is controlled by:

(i) COUNTING

(ii) TESTING FOR A CONDITION

There are three common loop structures:

(i) Repeat (the process) forever!

(ii) Repeat (the process) until (a condition is met).

(iii) While (a condition holds) repeat (the process).

Structure (i) is of little use, except that we have to note it and make sure

it does not occur.
In structure (ii) the condition is tested after processing.

In structure (iii) the condition is tested before processing.

Sinclair BASIC uses a convenient and powerful set of statements for

controlling repetition by counting called:

FOR - NEXT Statements

SUBROUTINES

Structured programming involves breaking down a complicated

problem into subproblems which can be worked on separately.

SUBROUTINES are such separate independent program modules.

They are distinct from SUBPROGRAMS which have similar

properties in that they are routines or groups of program statements

that are repeated more then once during a program run.

Subroutine modules have a unique address and can have a name

(like a person who lives in a house). Transfer of control to the

subroutine from the MAIN PROGRAM, when the program runs is by

reference to the subroutine address through a special SUBROUTINE

CALL INSTRUCTION. This is the GOSUB (address of subroutine)

statement.

A return of control to the main program to carry on processing from

where it left off is through a special instruction: RETURN.

Subroutine structures in Sinclair BASIC are explained in Section N.

NESTED STRUCTURES

These are program modules or structures that lie entirely embedded

within each other (like a set of Russian dolls).

A simple nested structure is
- MODULE 1

r MODULE 2

r—— MODULE 3

68 69

In terms of program statements this would look like:

module 1

10_
20_

module 2
40_

50_

60_

module 3

70_

80_

100_
110_
120_
130_

140_

The flow of control is:

START MODULE 3

i
COMPLETE MODULE 3

TRANSFER CONTROL

BACK TO MODULE 2

Subroutines, subprograms, loops and decisions may be nested in

programs. Nesting is dealt with more fully in Sections H, L and N.

G6: The Data Table

When designing a program it is important that our knowledge of the

data and information pertaining to the problem is complete. All data

will need to be assigned a VARIABLE name, unless it is a numeric
constant used in a formula.

70

The variable type will be either:

NUMERIC - numbers - A, N1, COUNT, A(I,J)

STRING -characters - A$, A$(I ,J)

LOGICAL - numbers or characters - A, A$, NOT B

Numeric variables will be integers, fractions, real and imaginary

numbers.
Strings will be names, characters and symbols.

Logical variables will be the values TRUE or FALSE, 1 or 0 as

appropriate to their use. Logic is dealt with in Section R.

We also require to know whether our data is:

INPUT

OUTPUT

or INTERMEDIATE

Intermediate data is used in the body of the program, e.g. the value of

a loop counter, or the intermediate result of a calculation. Intermediate

data is useful for testing and debugging purposes when running the

program or algorithm, using machine or hand traces.

The equations, functions and expressions that will use the variables

will need to be known. When dealing with equations, functions and

expressions the units of the variables or parameters concerned must be

known and should be stated.

The first and simplest data table to construct is a descriptive list of

variables to be used in the program. This is important for

documentation purposes. For example:

VARIABLE DESCRIPTION TYPE

A First number Input

B Second number Input

SUM Sum of A and B Output

A$ User response to

‘RUN AGAIN?’

Input

For program design purposes the value ascribed to each variable at

different points through the programs can be added. This forms a data

table that is useful for checking the algorithm before and after coding it

into BASIC, and is also a way of analysing errors in your own

program, and understanding how other programs work.

71

Loop, counters are included in the list of variables. If their values are

used for calculation inside the loop, this should be stated. There are

some examples of this type of data table in the text.

REFINING THE ALGORITHM

The tree diagram should be further broken down and refined until the

final sub-modules correspond to recognisable BASIC statements and

structures. As you get more experienced, you will recognise more

complex structures, and the solution to a problem will become
apparent at an earlier stage.

G7: Describe the Algorithm

1.4.1 WRITE OUT YOUR METHOD OF SOLVING

THE PROBLEM (THE ALGORITHM) IN STEPS

IN A SIMPLE ENGLISH STYLE

(PSEUDOCODE).

1.4.2 DRAW A FLOWCHART SHOWING HOW THE

PROGRAM WILL RUN FROM START TO
FINISH.

1.4.3 TEST THAT THE ALGORITHM WILL WORK

BEFORE CODING IT INTO BASIC.

Having broken our problem down into distinct things to do, or

subproblems, to a stage where we are able to write a BASIC program,

we need to do at least two things before we code. These enable us to

write programs that work and that other users can understand.

The algorithm description in pseudocode or flowchart form is an

important point of the documentation of your programs. This is not

written as part of the program but as a separate document which will

also include a listing of the program. This is important for other

programmers who may want to modify your program or use it as part

of a larger program, and for you yourself if you come back to it after a

72

period of time and cannot remember how you designed it! The

program listing alone is often not enough, if the algorithm is complex,

to show how the program works.

G8: The Pseudocode Description

In the structure or tree diagram - which we draw out in rough on a

piece of paper as we design our solution - each block or module right

down to the lowest level has an English description of the task to be

done inside it. (The very lowest level tasks will be described in fntences that are very similar to the BASIC program statements

emselves, as you will see in Programming Methods II.)

Our algorithm will be written out, in a step-by-step fashion, and will

include all the descriptions in the boxes. The highest or first level

description (simple box) will be the algorithm and program title. The

second level will be the titles of the program sections. Each of these

major sections will encompass a further group of modules, all of which

will be named in our description of the solution.

The lowest level of our tree diagram will be the specific instuctions

the computer has to perform. These will be translated into the BASIC

language on an almost one to one basis, and will contain the important

and easily recognised language structures, for making decisions,

branching and jumping, and repetition that we have previously

mentioned. (A summary of pseudocode descriptions of some control

structures and their flowcharts with BASIC program equivalents is

given in Section 0, Programming Methods II.) If you imagine turning

the tree diagram on its side and taking away the boxes, the descriptions

that are left constitute a pseudocode description of the algorithm.

As an example, let’s look at the tree diagram and the algorithm

description for the problem of asking our robot to make a pot of tea.

Using our tree diagram we can write down our algorithm for making

a pot of tea as a sequence of instructions (to be coded later into a

computer language). We use the English language as our pseudocode

and our program is written directly from the sub-tasks in the bottom

line of boxes in the tree diagram.

We use the boxes at higher levels in the tree to define distinct

modules. Comments or REMARK statements identify each module

and explain what is being done in each algorithm section:

Remark * * Algorithm for robot to make pot of tea * *

Remark * Boil water - task 1.1*

1.1.1 Fill the kettle with water

1.1.2 Wait until the water is boiling

1.1.3 Plug in the kettle and turn it on

Remark * End of task 1.1*

Remark* Module - Put tea in the pot - task 1.2 *

1.2.1 Get toe pot

1.2.2 Put 200 tea bags in the pot

73

Remark*

Remark *

1.3.1

1.3.3

1.3.4

Remark *

Remark * *

End of task 1.2*

Module - Put water in the pot - task 1.3*

Take pot to kettle

Stir tea with spoon

Put lid on tea pot

End of task 1.3 *

End of Algorithm - tea is made * *

You can see that the tree diagram shows why each part of your

algorithm is included and why it is in the particular position in which

you have placed it on the tree.

The tree diagram contains information about three things:

(1) The problem broken down into different levels of detail starting

from the general concept of what is to be done down to the

specific activities and instructions which will enable the problem

to be coded.

(2) The order in which instructions must be performed.

(3) The comments which must be included to explain what the

program is doing.

Exercises

diagrams. Their power comes from using them to help make visible

and describe the flow of control in the algorithm and the resulting

program. They are used to help code the program into BASIC

instructions, and later form an important part of the

DOCUMENTATION of a program. Note that flowcharts express the

important control structures used in programming in diagram form.

We give a selection of standard flowchart symbols here. There are

additional ones, but their usage varies. The conventions of use should

be followed if you wish other people to understand your flowcharts. For

your own use, in analysing programs, you may be less exact, but not

less systematic. Flow in a program can be illustrated by a selection of

blobs and rectangles only, given that the lines of flow are correctly

given, and the right words are written in the blobs! Doing this is all

right for yourself, but not if your flowcharts are to be comprehensible to

others.

FLOWCHART SYMBOLS

Flow lines. These connect the program blocks.

The arrows show the direction of flow, and are

very important.

1 Our algorithm has the following mistakes in it:

a) Some instructions are wrong. They are spelt incorrectly

and the robot will not be able to recognise them.

b) Some instructions are in the wrong order.

c) Some instructions are missing in the algorithm.

d) Some instructions are missing on the tree diagram.

Find the mistakes!

2 Correct the tree diagram and the algorithm.

3 Expand the tree diagram and the algorithm to a further sub-task

evel. For example:

1.1.1 Fill the kettle

becomes

1.1.1.1 Put kettle under tap

1.1.1.2 Turn on tap
etc.

4 Draw a tree diagram and write the algorithm in pseudocode for

a robot to set up and switch on your microcomputer system.

G9: Flowcharts

Flowcharts are a second graphical method used in designing programs.

They consist of linked boxes of different shapes. Each shape has a

different use and, as with tree diagrams, each contains a brief

description of what the program should do at a particular point.

It is harder to design programs using flowcharts than with tree

This symbol represents any kind of processing

function, that is general Programming

Statements, i.e. “Purchase Tea” or

LET A = B + C.

This represents a decision, with a Conditional

test, e.g. “Is there another shop open” or

IF A = 3 THEN ... It has a Yes/No branch,

according to whether the condition is True or

False, which determines the program flow.

This represents either Output in the program

to the screen or printer, or Input from the

keyboard, e.g. PRINT “HAVE YOU A

PACKET OF TEA?” or INPUT B.

This represents a named process that is

specified elsewhere, e.g. Subroutine GOSUB

1000. The subroutine would have a separate

flowchart.

74 75

This represents an exit to or entry from another

part of the flowchart, allowing one part of the

chart to be connected to another part. Used

when another direct line link would be

confusing, or to connect to a separate page.

This represents the Crossing of two Flow

Lines. They are not connected.

This represents the Junction of Flow Lines.

The two lines of flow join.

Terminal Point, e.g. Start, Stop, Pause.

A flowchart does not branch out like a tree diagram. It always

converges to the stop point. It has a direct relationship to the program

it describes. Writing down a flowchart is rather like drawing a diagram

of the program itself. Below are some examples of simple flow

structures, with the program and the flowchart.

FLOWCHART

1. Simple sequences

PROGRAM

10 LET X - 5
20 INPUT Y
30 PRINT X,Y

76

10 INPUT X
20 IF X=0 THEN GOTO 50
30 PRINT X
40 GOTO 10
50 REM ** END* *

77

Notice that the above flowcharts represent the programs line by line.

Flowcharts can also be less detailed, and the flowchart symbols used to

represent program blocks (sequences of program instructions) or

modules rather than one or two lines. They then describe a less detailed

flow structure. We might have a flow that was represented like this:

This is like a flowchart of a higher (less specific) level of a tree diagram.

Each section could have a more detailed flowchart drawn up to show

the individual lines of the program, or comments could be added to the

blocks above, relating the program lines to the blocks:

78

You will soon start to write short programs, and should draw up

flowcharts with each program line or instruction indicated separately.

Later, for longer programs with large numbers of lines, the flowcharts

must be condensed where the sequence is simple to follow in the program, to

keep them of manageable size. Any complex manipulations should still

be included in full.

EXAMPLES

(1) Here is a flowchart for our robot. We are going to ask it to buy a

packet of tea.

79

In the same way as our ‘making a pot of tea’ problem which the robot

has to solve, each of these boxes must be broken down into simpler

instructions. On a simple flowchart it may not be possible to see how

the problem has been broken down. What we must do is either draw

the whole flowchart again with more detail or draw new expanded

flowcharts at specific points, e.g. “ENTER SHOP” could be replaced

with the following:

Here is a flowchart of a program to input two numbers, output

the sum, and ask you if you want to run the program again.

10 INPUT A

20 INPUT B

30 LET S - A + B

40 PRINT S

50 PRINT “RUN AGAIN?

(YES/NO y}
60 INPUT A$

70 IF A$ = “YES” THEN

GOTO 10

80 STOP

80 81

(2) FLOWCHART

82

Note that the flowchart and program test whether the counter value is

less than 5, using the < symbol.

(3) PROGRAM

10 REM “AVERAGE”

20 REM ** PROGRAM FINDS AVERAGE OF FIVE

NUMBERS INPUT **

30 REM ** START **

40 LET SUM = 0

50 LET COUNTER = 0

60 LET COUNTER = COUNTER + 1

70 INPUT X

80 LET SUM - SUM + X

90 IF COUNTER < 5 THEN GOTO 60

83

100 LET AVERAGE = SUM/5

110 PRINT AVERAGE

120 REM ** END **

The operand 7' means ‘divided by’ and is equivalent to the ‘ -r- ’

symbol.

and jumping to different parts of the program to happen, repetition of

parts of the program to take place and how separate modules called

subroutines and sub-programs can be called into action where

necessary - these are the language structures.

Let's go and meet them!

Exercises

1 Design an algorithm (using tree diagram) and write a BASIC

program with a flowchart to find the sum and average of ten

numbers to be input at the keyboard.

2 Produce the tree diagram, flowchart and program which

calculates the area of any rectangle.

3 Design the algorithm, BASIC program and flowchart which

calculates the total volume and weight of three boxes to be

airfreighted from London to New York. Use the following data:

BOX LENGTH CM BREADTH CM HEIGHT CM WEIGHT KG

1 20 4 2 2
2 40 3 6 3.5

3 70 10 15 20

Test that it works!

G10: Testing the Algorithm

It is always best to make sure your method of solving the problem

actually works before coding it into BASIC. This pre-coding check is

known in the programming trade as a DRY RUN or WALK

THROUGH.

Using the DATA TABLE, we check through, module by module,

the values of all the variables, expressions and counters step by step

through the algorithm. This will uncover errors in the logic and

method and will save time when debugging the finished product later

on. Professional programmers always do this as they have to work to

very tight time schedules, and by doing things properly at the start they

save time later on. We would like you to try a few walk throughs on the

simple programs you will be designing at first, just to get the hang of

the idea.

We have now covered the first essential steps in designing a program

and have seen a simple coding process. We have talked about methods

and concepts and introduced some new terminology. After concepts we

go to detail.

The algorithm is ready to be coded into a BASIC program. In doing

this we are going to put into the program the fundamental

programming tools, which are language structure and control

structures. We have to know what these structures or tools are before

we can use them. This requires a look at how Sinclair BASIC, through

small groups of instructions, enables decisions to be taken, branching

84 85

SECTION H: CONTROL

HI: Control in Programs

The statements which make up a BASIC program are numbered.

BASIC is thus called a LINE NUMBERED LANGUAGE. Control in

all BASIC programs is carried out by reference to these line or

statement numbers. The ZX81 and Spectrum will normally run a

program from the lowest numbered statement through to that with the

highest number unless instructed to do otherwise. This is exactly what

concerns us here, and thus we need to recognise that we can control the

order in which program statements are executed by using four

important instructions in Sinclair BASIC:

- GOTO (for direct transfer)

- IF-THEN (for decisions and

branching)

- FOR-NEXT (for loops

(repetitions))

- GOSUB-RETURN (for

accessing program modules

called subroutines)

These instructions are used singly or combined together with other

instructions to form groups of program statements called CONTROL

STRUCTURES. There are four principal control structures:

- DECISION AND BRANCH

- LOOPS

- SUBROUTINES

- NESTED STRUCTURES

In this Section we will discover how to take decisions and branch to

other parts of the program. We will study the remaining structures

later in Part Three. The most important property of a computer is that

it can be programmed to make decisions, by using the relational or

conditional operators of BASIC.

H2: Condition Testing

CONDITIONAL OPERATORS

Conditional operators are also called relational operators as

they determine the logical relationship between two

expressions, numeric or string, as:

Equality: -

Inequality: <>

Greater than: >

Less than: <

Greater than or equal to: > =

Less than or equal to: < =

86

The priority of conditional operators is 5, Priority will be

explained in Section J.

They are executed in order left to right across a statement

unless in brackets.

We often need to use the complements or opposites of these operators

in decision making. The complements are:

Operator Complement

equality = inequality <>

greater than > less than or equal to < =

greater than or equal to > - less than <

The reverse operations are true in each case.

H3: IF-THEN

IF-THEN

Conditional operators are used with:

IF-THEN statements

IF (CONDITION IS TRUE) THEN (PERFORM AN

INSTRUCTION).

For example: 40 IF (A = B) THEN GOTO 10

50 IF C < = 6 THEN STOP

60 IF J > K THEN PRINT “J”

The format of the statement is:

IF (CONDITION) THEN (INSTRUCTION)

Any BASIC instructions can be used in this kind of statement,

although a number are unlikely to be useful (e.g. NEW, CLEAR).

In general if the condition in the program line is TRUE then the

instruction following the condition is obeyed. If the condition is not

TRUE (FALSE) then control passes to the next line.

This powerful facility enables us to branch and transfer control to

another line in the program.

87

H4: GOTO Instructions

GOTO

The normal control sequence in a program is via numbered

statements - from the lowest to the highest. GOTO (line

number) switches control to the line number specified:

100 GOTO 20

200 GOTO (B + C)

As a command GOTO 30 executes a program from line 30.

Unlike RUN, with this method variables are not cleared

before execution.

The Spectrum includes a space between GO and TO when printing

this instruction.

Exercises

Key in and run this program which checks that only positive numbers

are input and gives a bad data error message as well as prompting for

the next input. Notice the use of IF-THEN and GOTO. INPUT both

positive and negative numbers.

10 REM*INPUT CHECK*
20 INPUT A
30 IF A>0 THEN PRINT A
40 IF A<=0 THEN PRINT "BAD IN

PUT"
50 PRINT "HAVE YOU ANOTHER NUMB

ER? ANSWER YES OR NO"
60 INPUT A$
70 IF A$ ="YES"THEN GOTO 20
80 STOP
90 REM*END INPUT CHECK*

Now try these exercises which demonstrate the power of GOTO:

1 10 PRINT “CENTURY”;

20 GOTO 10

Run this program

2 10 GOTO 80

20 PRINT “COMPUTERS”;

30 GOTO 10

40 PRINT “PERSONAL”;

50 GOTO 20

88

60 PRINT “SINCLAIR”;

70 GOTO 40

80 GOTO 60

Key it in and sort it out!
This is called ‘spaghetti programming’. Structured programming

techniques have been designed to avoid the excessive use of GOTO

statements.

3 10 INPUT A$

20 PRINT A$;

30 GOTO 10

INPUT some graphics characters

and watch the patterns!

4 Key in and run this example:

10 INPUT A

20 IF A = 1 THEN FOR I = 1TO 10

30 PRINT “CENTURY”

40 IF A = 1 THEN NEXT I

50 STOP

Line 10 asks you to input a number.

Line 20 examines if it is equal to 1. IF this condition is TRUE then a

FOR-NEXT loop is set up to print “CENTURY”ten times. If it is not

TRUE then control passes to the next line.

Line 30 “CENTURY” is printed once.

Line 40 the condition is tested again. If TRUE the loop continues

and CENTURY is printed again. If not then control passes to line 50.

Line 50 stops program execution.

Can you understand it? If not wait until you have read the section on

LOOPS.

H5: Decision Structures

DOUBLE DECISIONS

The simplest decision involves the evaluation of a LOGICAL

CONDITION - i.e. a condition that may have the value of either

TRUE or FALSE. A result of this evaluation decides which part of a

program is executed next. These parts of the program are called

TRUE TASK and FALSE TASK.

89

The flowchart for the Double Decision STRUCTURE is:

It is called a double decision as there are two alternative modules that
can be performed.

In the flowchart, if the indicated condition is true, then the program

section representing the True task is carried out, otherwise the

program section representing the False task is performed. Only one of

the paths from the condition test is taken, and the program will

continue at the statement represented by the arrow at the bottom of the
flowchart.

Each task can be a single instruction or a statement or a group of
instructions.

The Double Decision Structure is known by the general name of the

‘TF-THEN-ELSE Decision Structure”. Its general form is:

IF (condition) THEN (true) ELSE (false)

This means: IF the condition tested is True THEN perform the True

task, and IF the condition is not true perform the False task.

Our algorithm description of it would look like:

1. Decision Module.

1.1 Do the test. If result is True then

1.2 Do True task

1.3 Otherwise do False task

We can write this formally in pseudocode as:

module - decision

if condition

then True Task

else False Task

end if

end module

End if and end module are bounds to the structure. In Sinclair BASIC

we code it as:
10 IF (cond) THEN (branch to True task)

20 (False task)

Note that in this case the only literal equivalent of BASIC from the

pseudocode is with the use of IF and THEN.

The branch to the true task is made with a GOTO instruction. For

example:
10 IF A>0 THEN GOTO 100

20 REM * FALSE TASK *

30 ...

90 GOTO 120

100 REM * TRUE TASK *

110 PRINT A

If we did not branch to the true task starting at 100 and used:

10 IF A>0 THEN PRINT A

20 REM FALSE TASK

in line 10, the true task would be processed and control would then

pass to line 20 - the false task. In other words, both tasks would be

processed! Watch out for this.

EXAMPLE: Input two names as strings. The program compares

them and prints them out in alphabetical order:

90
91

10 REM * ALPHA *

20 INPUT A$

30 INPUT B$

__40 IF A$<B$ THEN GOTO 80

FALSE 50 PRINT B$

TASK 60 PRINT A$

70 GOTO 100

TRUE 80 PRINT A$

TASK 90 PRINT B$

100 STOP

110 REM * END ALPHA *

A brief formal pseudocode description is:

mod - Decision

if Condition

Then P

end if

end mod

Our BASIC statement is:

IF (condition) THEN (TRUE)

EXAMPLE: Input numbers and stop if a number greater than 10 is

input:

THE SINGLE DECISION

This is a special case of the double decision structure in which there is

only one task to perform - the True task.

This is called an IF-THEN decision structure. Its BASIC form is:

IF (Condition) THEN (True)

Which means:

IF (the condition test is true) THEN (perform the true task)

Our algorithm description would be:

1. Decision module

1.1 Perform test

1.2 If True, process true task

(ZD

10 INPUT A

20 IF A>10 THEN STOP

30 GOTO 10

Note the abbreviation of True to T and False to F.

MULTIPLE DECISIONS

There is often the need in programs to perform several tasks based on

the result of a set of conditions. To solve these problems we use a

92 93

multiple decision structure. This kind of structure is especially useful in
breaking up larger tasks into smaller ones.

Multiple decisions are most conveniently handled by multiple logical

operations. This is covered in Section R. We will consider the
conventional way of handling them.

As an example of multiple decisions consider a food vending

machine. You put a coin in and press the respective button of the

article you wish to be delivered to you. Another example would be a set

of arithmetic testing programs, with questions in each. The computer

would ask you which set of tests you required, you would key in the

reply and, from several alternatives, the required program would run.

The flowchart for such a structure is:

Where Cl, C2, C3 are the conditions and PI, P2, P3 are the True
tasks.

EXAMPLE: Input any of three letters A, B, C and print out a
corresponding reply.

5 PRINT "ENTER A»B OR C"
10 INPUT A$
20 IF A$="A" THEN GOTO 60

94

30 IF A*="B" THEN GOTO 80
40 IF A$="C" THEN GOTO 100
50 STOP

60 PRINT "YOU INPUT A"
70 STOP

80 PRINT "YOU INPUT B"
90 STOP

100 PRINT "YOU INPUT C"
110 STOP

The Pseudocode description of this structure is:

mod BASIC

case

if Cl

then PI 10 IF (Cl) THEN (PI)

if C2

then P2 20 IF (C2) THEN (P2)

if C3

then P3 30 IF (C3) THEN (P3)

endcase

endmod

PROGRAMMING WITH GOTO

When programming in BASIC take great care in how you use the

GOTO statement. It takes two main forms. Used on its own it is called

an unconditional GOTO and when used with IF-THEN it is called a

conditional GOTO.

GOTO enables you to jump around in a program like a flea on a

blanket - don’t do it! Try and code your program to execute in

sequence and avoid it becoming a bowl of spaghetti. Excessive use of

GOTO makes programs difficult to refine and debug. Relationships

between the program paths become difficult to follow. However - do

not take the other extreme and write awkward complicated code to try

and avoid GOTOs!

Ideally, unconditional GOTO statements should only be used to

skip over code and not to repeat code sections (i.e. they should only be

used to transfer control forward in a program).

Do not put an unconditional GOTO inside a loop or subroutine to

jump out of it. Do not jump inside a loop or subroutine, because you’ll

find that jumping in and out of loops can cause unpredictable results.

Do not jump to another GOTO. For example:

100 GOTO 200

200 GOTO 300

95

or else:

100 GOTO 100 !

Exercises

1 Write a program to input integer numbers and stop if zero is

input.

2 Write a program to input integers and count the number of

times zero is input.

3 Write a program to input integers and calculate the percentage

of zeros input.

4 Write a program which prints out the result of dividing any two

numbers’ input and gives a “bad data - try again” message if

any of the input values is zero.

5 Write a program which will print out on request a lunch menu

for the different days of the week.

H6: Logical Operators: AND/OR

We will only introduce you to simple logical operations here. Logic is

dealt with fully in Section R.

Use of the AND and OR statements enables us to combine

conditional statements in powerful ways to make more complex

decisions in programs.

AND

AND combines relations so that the expression:

(condition 1) AND (condition 2)

e.g. (A = B) AND (B>1)

is TRUE when BOTH conditions are TRUE.

It is FALSE when one or both conditions are FALSE.

OR

OR combines relations so that the expression:

(condition 1) OR (condition 2)

e.g. (A = B) OR (BOl)

is TRUE when EITHER condition is TRUE.

It is FALSE when both conditions are FALSE.

The expressions formed by the use of AND and OR are used with

IF...THEN statements. For example:

20 IF X>1 AND X<10 THEN PRINT

“BETWEEN 1 AND 10”

96

50 IFX<>2 AND X<>3 THEN PRINT

“ X NOT EQUAL TO 2 OR 3”

40 IF A - B OR B = G THEN LET F = F + 1

The first example will be true if X is greater than 1 and X is also less

than 10, and the message will be printed. If X was 11, the first

condition would be true, but the second false. The whole expression

would then be false.
Notice the danger with the second example, in that we say in English

‘not equal to 2 or 3’, but we must key in an expression using AND. It is

clear once you realise that two conditions are to be tested - ‘not equal

to 2 and not equal to 3’. If, for example, X were 3 when this line in the

program was reached, then the second condition would be false in this

expression, and the whole expression would also be false.

The third example would be true if either A was equal to B or if B was

equal to C. It is also true if both these conditions are true.

We can also combine more than two conditions:

20 IF A = B AND B = C AND C = 20 THEN STOP

will stop if all three conditions are true. If one or more is false then the

whole expression is false.

Similarly:

20 IF B = 2 OR B = 3 OR B = 4 THEN LET B = 1

will make B = 1 if B is equal to 2 or 3 or 4.

It is also possible to use combinations of AND and OR:

30 IF (A - B AND B>2) OR (A = 2 AND B = 3) THEN GOTO 60

The expressions in brackets are evaluated first. The first expression in

brackets will be true if B is greater than 2 and equal to A. The second

expression will be true if A is 2 and B is 3. The program will pass

control to line 60 if either expression in brackets is true.

To summarise: where Tl, T2 etc. are true conditional expressions

and FI, F2 etc. are false conditional expressions:

(Tl) AND (T2) TRUE

(Tl) AND (F2) FALSE

(FI) AND (T2) FALSE

(FI) AND (F2) FALSE

(Tl) OR (T2) TRUE

(FI) OR (T2) TRUE

(Tl) OR (F2) TRUE

(FI) OR (F2) FALSE

Each condition may also be another AND or OR expression.

Exercises

Work out what will be printed by these programs, then key in and run

them to check. The operator “/” means “divided by” Q) and “*”

means “multiplied by” (*).

97

10 LET A=2
20 LET B=3
30 LET C=10
40 LET X=15
50 IF X/B=A AND C/A=5 THEN PRINT

"LINE 50 TRUE"
60 IF X/B=A OR C/A=5 THEN PRINT

"LINE 60 TRUE"
70 IF X/B=C/2 AND X>=15 THEN PRINT

"LINE 70 TRUE"

2
10 LET A=20
20 LET B=150
30 LET X=7.5
40 LET Y=2
50 LET S=B/20
60 IF S=X AND X*A=B AND Y=2 THEN

PRINT "LINE 60 TRUE"
70 IF X=B OR X<20 OR X>2 THEN

PRINT "LINE 70 TRUE"
80 IF (X=7.5 OR Y=10) AND (A/Y=l

0 AND B-150) THEN PRINT "LINE
80 TRUE"

Make sure you have got the programs correct before you run

them. Work out both sides of each expression using a relational

operator first. Then, giving each expression a T or F value, work

out the bracketed AND/OR expressions. This gives you a T or F

value for the whole bracket. Then work out whether the whole

expression will be true or false.

3 Write some similar programs for yourself to experiment with all

the relational operators used with AND and OR.

SECTION I: PRINTING

II: PRINT LPRINT

PRINT

The PRINT statement is used to output information by

displaying it on the screen.

10 PRINT A

20 PRINT B$

30 PRINT “YOUR NAME?

40 PRINT (B**2~4*A*C)

50 PRINT

prints out the value of

numeric variable A

prints out string variable B$

prints out whatever is

included within the quotes

(inverted commas)

prints out the calculated

value of the expression

leaves a blank line

It can take many forms. For example:

9 9

LPRINT

The LPRINT statement is used to output information by

printing it out on the printer.

The LPRINT statement is used in exactly the same way as the PRINT

statement, but produces printer and not screen output. If the printer is

not attached LPRINT statements are ignored.

The screen size for printing is 22 PRINT lines down the

screen, and each line is 32 columns (character spaces) wide.

The actual screen size is 24 lines by 32 columns, but the

bottom two lines are reserved for commands and operating

messages. The lines are numbered 0 to 21 down the screen

and the columns 0 to 31 across.

The PRINT statements shown above each commence at the left-hand

side of the screen, and each PRINT statement moves the printing

position to the start of the next line after it prints whatever it was told

to. Lines of greater than 32 characters will go on to the next line

automatically.

To clear the screen of printing we use the CLS (Clear Screen)

statement.

98 99

CLS

CLS erases all printing on the screen, and sets the new print

position at the start of the top line of the screen.

12: Spacing Items on the Screen

□
A semicolon (;) between two items causes the printing of the
second item immediately after the first.

For example:

10 PRINT A;B$

20 PRINT “AVERAGE”;C
Try the following program:

10 LET A = 6.89

20 LET B = 87.6

30 PRINT A;B

40 PRINT “AVERAGE” ;(A + B)/2
The display is:

6.8987.6

AVER AGE47.245

d his does not give a very satisfactory display since values run into each

other. One simple way to overcome this is shown below

10 LET A = 6.89

20 LET B = 87.6

30 PRINT A;“ ”;B

40 PRINT “ AVERAGE ”; (A + B)/2
The display now becomes:

6.89 87.6

AVERAGE 47.245

A comma (,) between two items causes the print position to be

shifted on (at least one place) to either column 16 or to the
next line column 0.

For example:

10 PRINT A,B

20 PRINT A$,B$

30 PRINT “AVERAGE”,C
Try the following program:

10" LET A =7.65

20 LET B = 8.67

30 PRINT “AVERAGE”,(A + B)/2

40 PRINT

50 PRINT “NUMBER1”,“NUMBER2”,

“AVERAGE”

60 PRINT A,B,(A + B)/2

The display is:
AVERAGE 8.16

NUMBER 1 NUMBER2

AVERAGE

7.65 8.67

8.16

Clearly the comma is useful if we wish to print a table with two

columns, but is unsuitable if we wish to have a table with more than

two columns.

It is important to remember the screen size when deciding the

form of your output. For your output the effective screen is 22

lines each 32 columns wide.

TAB

TAB C; moves the print position to column C. If this would

involve back-spacing it moves on to the next line.

The following program (with printout) indicates how the TAB function

can be used to improve the presentation of results.

10 LET A$ = “A.B.JONES”

20 LET B = 65

30 PRINT “NAME”;TAB 6;A$;TAB 19;“AGE”;

TAB 23;B;TAB 27;“YEARS”

NAME A.B.JONES AGE 65 YEARS

Note the semi-colons between TABs and print items. It is important to

remember that each line has 32 columns, numbered 0 to 31.

The next program shows a simple way of tabulating results.

10 PRINT “NO.”;TAB 4;“SQUARE”;TAB 12;

“CUBE”;TAB 20;“RECIP”

20 INPUT N

30 PRINT N;TAB 4;N*N;TAB 12;N*N*N;

TAB 20;1/N

40 GOTO 20

100 101

NO. SQUARE CUBE RECIP
1 1 1 1

2 4 8 0.5
3 9 37 0.33333333
4 16 64 0.25
5 25 125 0.2
6 36 216 0.16666667
7 49 343 0.14285714
8 64 512 0.125
9 81 729 0.11111111
10 100 1000 0.1

It is important to remember that numbers are output with up to 8

figures and allow the appropriate space. An alternative is to decide how

many figures you want and use the INT function (see Section J).

13: PRINT AT

AT L, C moves the print position to line L and column C.

For example:

10 PRINT AT 10,12;“CENTRE”

will cause the string specified to be printed starting at line 10, column

12, i.e. roughly in the centre of the screen - since L goes from 0 to 21,

counting down the screen, and C goes from 0 to 31, counting left to
right.

EXAMPLE

The program below sets up a symmetrical pattern using the character

of your choice. Note the use of the command CLS to clear the screen of
your input.

10 PRINT AT 5,4;"WHICH CHARACTER?"
20 INPUT A$
30 CLS
40 LET L=INT (RND*10)+1
50 LET C=INT (RND*15)+1
60 PRINT AT 11+L,16+C;A$
70 PRINT AT 11-L,16-C;A$
80 PRINT AT 11+L,16-C;A$
90 PRINT AT 11-L,16+C;A$

100 GOTO 20

Try adjusting the parameters in lines 60-100.

The important feature to remember is:

Number of character cells is 32 horizontally by 22 vertically,

i.e. 32 X 22 altogether.

The TAB function uses C = 0 to 31 only.

The AT function uses L = 0 to 21

and C = 0 to 31.

You should have noticed that the PRINT commands reinforce each

other, and provide alternative ways of achieving the aim of placing

characters, character strings or numbers at the desired positions on the

22 line, 32 column screen display.

For example, these three programs:

10 LET X - 3
20 PRINT X,,,,
30 PRINT X*X

10 LET X * 3
20 PRINT X
30 PRINT
40 PRINT X*X

10 LET X- 3
20 PRINT X,TAB 32;w ";TAB 32;X*X

would give the same printout on screen. The number of keystrokes

(count them) is what determines which statement usage is efficient in

any instance. You will soon come to recognise which to use if you

experiment.

PRINT AT instructions will overprint anything already printed at

the position specified. We can use this to replace on the screen one set

of data, or one string, by another.

10 INPUT X

20 PRINT AT 0,0;X

30 GOTO 10

overprints one X by the next X each time. If we input 1,2,3... 10 it

works fine. But if we input 10,9,8... 1 we get:

10
90

80

70

etc.

Similarly,

10 PRINT AT 10, 10; “ZX81”

20 .
30 ..

40 PRINT AT 10, 10; “SINCLAIR”

works, but not if we swap the two strings around - we end up with

ZX81LAIR, and we have the same problem with numbers, which can

be between one and eight digits long.

We can blank out something on the screen by overprinting an empty

string. For the simple problems above, the addition of appropriate

102 103

strings will work; we add 4 spaces after “ZX81”, so that line 10

becomes:

10 PRINT AT 10,10; “ZX81

and for numbers, we can use:

20 PRINT AT 0,0;X; “ ” (7 spaces)

Using LPRINT also requires care.

For the LPRINT instruction, TAB works exactly as PRINT

TAB.

LPRINT AT L,C is converted to LPRINT TAB C, and the

line number is ignored.

This is because the printer cannot go back to a previous line. Try this

program. Input 1,2,3,4,5.

10 INPUT X

20 LPRINT AT X,X;X

30 GOTO 10

will print 12345, as if line 20 had read LPRINT TAB X;X.

For any programmed screen format that is not a simple sequence of

print lines, it is better to use COPY to produce output on the printer,

once all the data is on the screen.

COPY prints the entire current screen display on the printer.

If used as direct command, we can COPY less than a whole screen by

pressing BREAK before completion, but if used in a program, the

whole screen will be copied.

14: The Graphics Characters on the ZX81*

The ZX81 character set includes a set of graphics characters, and you

were told how to access them in Section B. To recap:

Graphics characters are accessed by using Graphics"! to ge*

the [G] cursor. Repeat to return to | L1 cursor. Unshifted keys

then produce inverse video characters, (e.g. key Q, gives 0 .)

Shifted keys produce graphics cells, if shown on the keys: e.g.

SHIFT R gives Ti .If no graphics cell is shown, result is

inverse video form of normal shifted character (e.g, SHIFT U

gives 0).

The inverse video characters and graphics cells can be used for

enhancing displays and drawing bar charts, diagrams and pictures.

They are manipulated as strings, by putting quotes round them, e.g.

PRINT “ M” or PRINT " 0”.

* The Spectrum offers more extensive graphics facilities than the ZX81, and Spectrum
owners should refer to Unit W3 for details. The Spectrum has the solid graphics
characters of the ZX81, but not the shaded characters, on keys 1 to 8 in graphics mode.
Read through this section bearing this in mind.

104

Put your computer in graphics mode and run through the keyboard,

noting the unshifted and shifted versions of each key. Note that

RUBOUT (DELETE) works with the jc[] cursor, but the cursor

control keys do not, and that the [IT] cursor must be on screen for them

to work.
By the time you fill one line and move on to the next, you will see

that all these graphics characters join up, with no gaps between the

cells. The difference between the grey cells on the A and K keys is that

they join up with the half-shaded graphics cells on the S, D, F and G

keys in different ways. Experiment with these. If they join up properly,

you cannot see the join. If they do not, the join is visible as a chequered

pattern. To check the characters across the screen, use the bottom lines

of the screen directly. To check the vertical joins, enter this program:

10 INPUT A$

20 PRINT A$

30 GOTO 10

Change the Q7] cursor to (G\ , then input the graphics character. You

have to then press NEWLINE (ENTER) twice; the first time to change

|~G] to (T|, the second to input the character.

We can use the graphics characters to draw (crude!) pictures,

enhance printout on the screen - by printing prompts in inverse video

for example - or putting titles inside surrounds, and use them in

diagrams or moving graphics. You’ll have to wait a few more chapters

before we can do anything interesting, but here are a few things to try:

Here’s a program to put a border round a word in inverse video.

Notice we store the graphics in string variables. This gives us better

manipulative power than if we just used literal strings. On the ZX81

the graphics characters in A$ are the shift graphic on the E key, 11

times the one on the 7 key and the one on the R key. If you are using a

Spectrum, the relevant keys are ‘4’, ‘3’ and ‘7’. You can work the

other lines out for yourself.

5 REM #*BJ
±0 LET fi$=
2© LET e$=
30 LET C^=
4-0 LET X=©
50 LET Y=©
6© PRJNT RT X , Y ; R $;RT X + I,Y;B$

;RT X+2,Y;C$

Notice the combined PRINT AT statements in line 60.

The production of inverse characters on the Spectrum (white *

characters on a black background, unless colour is being used) can be

done in different ways. You can use CAPS SHIFT and the 4 key to put

an IN Verse VIDEO control character before a letter or other

character, but this will make all characters thereafter into their inverse

forms unless CAPS SHIFT and 3 is used to restore NORMAL

VIDEO. The alternative is to use INVERSE as part of a program

105

statement. INVERSE is obtained using SYMBOL SHIFT and the M

key in E mode. To get inverse video this must be followed by 1, so that
to print HELLO in inverse video we key in:

10 PRINT INVERSE 1;“HELLO”
This will appear normally in the program listing, but in inverse when
the instruction is carried out.

Now add the following lines, and you will see why the use of string

variables, and variables for the line and column numbers, can be
useful.

70 LET X = X + 1

80 LET Y = Y + 1

90 CLS

100 GOTO 60

Run the program, and you see we have a crude moving display. CLS

makes the screen ‘flash’ a bit, but we could avoid this by overprinting.

Revise the program to erase by overprinting empty strings.

We can use the graphics characters for pictures. Try this:

10 PRINT AT 0,9; " a—fg. "
20 PRINT AT 1,8; ** sillily1
30 PRINT AT 2,8; “

2 Add a routine to LPRINT name, address and age, without the

borders or titles, on the printer after deleting the COPY

instruction.

3 Input names, ages and occupations of three friends and arrange

them to be tabulated in a suitable form.

4 Experiment with ways to make the car move across the screen.

(it's supposed to be a car).

Change the program to allow you to input a value for Line and

Column numbers, so that you can place the car in different places.

Then add a GOTO loop to allow multiple cars on the screen.

Exercises

1 Write a program that puts:

NAME:

AGE:

ADDRESS:

on the screen, then prompts for inputs on line 20 (INPUT

NAME etc), and prints the responses on the screen.

Each prompt should overprint the previous one. Allow four

separate lines for the address. Blank out the last prompt, then
have the screen copied on the printer.

106 107

SECTION J: ARITHMETIC AND FUNCTIONS

J1: Arithmetic Operations

A prime function of the computer is to evaluate formulae and

expressions similar to those used in standard mathematical calculation.

Algebraic EXPRESSIONS are written in BASIC using the

following OPERATORS with a set of variables or numbers as the
OPERANDS.

ARITHMETIC OPERA TOR EXAMPLE

SYMBOL NAME PRIORITY BASIC MATHS
* *

exponentiation

(raising to a power)
10 A* *3 A3

[f] (on the Spectrum) A f 3 A3
” negation 9 -A -A
* multiplication 8 A*B AxB (a.b)

/ division 8 A/B A + B (±)

+ addition 6 A + B

W

A + B
subtraction 6 A-B A-B

Note that negation operates on one operand - a unary operation (i.e.

makes a variable negative, e.g. - A) and that the subtraction operator

uses two operands, e.g. A-B, a binary operation.

J2: Priority

1 All arithmetic, conditional and logical operations are assigned a

priority number from 10 to 1. High priority is 10, low priority is

1. The priority numbers for the arithmetic operators are as

shown in the previous Unit.

2 The priority of an operation determines the order in which it is

evaluated in a complex statement in which more than one

operation is to be performed. High priority operations are
performed earlier.

3 Brackets (parentheses) are used in BASIC algebraic expressions.

Brackets clarify which expressions constitute separate values to

be operated on. Expressions inside brackets are evaluated first

before the quantity is used in further computation. With multiple

(nested) brackets the evaluation proceeds from the innermost

bracketed expression to the outermost.

4 For operations of equal priority in the same statement,

evaluation is from Left to Right.

Brackets can often be omitted when the sequence of evaluation is

understood, but there is no harm in using them to ensure correct

evaluation. Expressions may be tested by using PRINT as a direct

command, to check that you have them correct. For instance key in

PRINT (8*2.6/5)*2/3 and press NEWLINE (ENTER). The result will

be printed on the screen. If a sequence of direct assignments of values

to variables is keyed in First (using LET A = 4 (NEWLINE/ENTER),

LET B = 3 (NEWLINE/ENTER), etc.) then variable expressions may

be evaluated.
Using this facility you should experiment with a variety of

expressions until you feel confident that you have understood the way

in which expressions are evaluated, and the way you have to formulate

an expression in BASIC to ensure it returns the desired result.

EXAMPLES

1 Evaluation of a + b - c

In BASIC: A + B-C

Operators have equal priority;

(1) Left to Right A + B

(2) L - R (A + B) - C

Evaluation of , (axb) + c

In BASIC A*B/C

* has same priority as /

(1) L-R A*B

(2) L R (A*B)/C

Evaluation of a.(—)
v c '

, ax(brc)

In BASIC A*(B/C)

(1) Brackets first (B/C)

(2) Multiplication A*(B/C)

But notice we could write the expression without brackets in

BASIC as B/C*A

This is evaluated:

(1) L-R (B/C)

(2) L^R (B/C)* A

which gives the correct result.

4 Evaluation of (b2 - 6c)2 + 5

In ZX81 BASIC notation:

(1) Inside bracket;

exponentiation

(2) Inside bracket;

multiplication

(3) Inside bracket;

subtraction

(B**2 - 6*C)**2 + 5

B**2

6*C

(B**2) - (6*C)

108 109

(4) Exponentiation

(5) Addition

In Spectrum BASIC notation:

(1) Inside bracket;

exponentiation

(2) Inside bracket;

multiplication

(3) Inside bracket;

subtraction

(4) Exponentiation

(5) Addition

5 Computer evaluation of a. b ~

In ZX81 BASIC notation:

(1) brackets

(2) exponentiation

(3) multiplication/

division L "► R

(4) addition/

subtraction L -► R

In Spectrum BASIC notation:

(1) brackets

(2) exponentiation

(3) multiplication/

division L R

(4) addition/

subtraction L -► R

((B**2) - (6*C))**2

(((B**2)-(6*C))**2) + 5

(B f 2 - 6*C) f 2 + 5

B f 2

6*C

(B f 2) - (6*C)

((Bf 2)-(6*C))f 2

(((B f 2) - (6*C)) f 2) + 5

£ + (e-Q
d g
A*B - C**3/D + (E - F)/G

E-F

C**3

A*B C**3/D (E - F)/G

(A*B) - (C**3/D) + (E - F)/G

A*B - C f 3/D + (E - F)/G

E-F

C f 3

A*B C f3/D (E - F)/G

(A*B)-(C f 3/D) + (E - F)/G

6 Evaluation of -70 + 2x 42 x3-3x7

In ZX81 BASIC notation: - 70 + 2 * 4**2 * 3-3 * 7

Priority 10 4**2

16

Priority 9

Negation

Priority 8

L -*• R

Priority 6

Result

-70

2 * 16 * 3 3*7

96 21

- 70 + 96 - 21

5

In Spectrum BASIC -70 + 2 * 4 f2 * 3-3 * 7

Priority 10 4f2

16

110

C
.

7
a
:

Priority 9

Negation

Priority 8

L— R

Priority 6

Result

16 * 3 3*7

96 21

96 - 21

Exercises

1 Write the order in which the following BASIC expression is

evaluated:

- A + ((B**3/C) - (A* *2/D))*(E + F)/G (ZX81)

- A + ((B f 3/C) -(Af 2/D))*(E + F)/G (Spectrum)

2 Write down the BASIC expressions for:

(i) (u2 + 2as)K

(ii) ut + t at2

. b + (4a.c)'A

(m> —

(iv) (XT6
Work out the order in which each of the expressions is

palliated. Test vour results on the computer.

: Number

A positive or negative decimal number whose magnitude is

between an approximate minimum of:

±3 x 10 39
and an approximate maximum of:

±2 x 1038
Zero is included in this range.

The smallest number the computer can handle is

2.9387359 x 10 39
The largest is:

1,7014118 x 1038
The computer stores and calculates numbers internally to an

accuracy of nine or ten digits, but prints out the results of

calculations to eight significant figures only, rounding where

necessary.

J4: The E Notation

The E or EXPONENT or scientific notation is the notation

computers use for input and output of numbers having a large

111

number of decimal digits. E should be taken to read: Himes

ten to the power of5. For example:

1.73 E5

is

1.73 times 10 to the power of 5

= 1.73*10**5 (1.73*10 f 5 in Spectrum notation)

= 173000.

Similarly:

3.8 E- 7

is

3.8 times 10 to the power of - 7

= 3.8*10** -7 (3,8*10 f~7in Spectrum notation)

= .00000038.

The computer will accept any number keyed-in in this form

and will print out numbers in this notation when their values

are outside a certain range.

For large positive and negative numbers the E notation is

automatically used by the computer for numbers

>= 1013
Numbers up to this figure are first rounded to 8 significant figures and

trailing zeros are added until 1013 is reached.

Key in and run this program:

10 LET A = 9.9999993E12

20 PRINT A

30 LET A = A+ 1E5

40 GOTO 20

Change line 20 to read:

20 LPRINT TAB 10;A

to get a listing of the result on the printer.

For small positive and negative numbers the E notation is

automatically used for numbers:

<= 10 ~6
To see this in action, key in and run the program below:

10 LET A ^ 1.00000 IE - 5

20 PRINT A

30 LET A-A-(IE - 12)

40 GOTO 20

Change line 20 to:

20 LPRINT TAB 10; A

if you want a printer listing of the changeover.

Exercises

1 Key in and run the following simple program, which illustrates

how numbers are printed, the E notation and the largest number

which may be obtained.

112

10 LET A = 1

20 LET A = A* 10

30 PRINT A

40 GOTO 20

With the ZX81 press [CONTI and (NEWLINE(ENTER) [when

the screen becomes full, and the message 5/30 appears on the

bottom of the screen to indicate no more room on the screen.

The Spectrum will display the 'scroll?’ prompt.

Notice the change to the E notation. Note that the program

finally stops itself on the ZX81 with the error message '6/20',

which indicates an arithmetic overflow (error code 6) as a result

of line 20, he. the number is too large for the computer to

handle. The Spectrum's response is more precise; the error code

in this instance will read: '6 Number too big, 20:T.

2 Change line 10 of the program to each of the following and run

the program each time.

a) 10 LET A= 1.00000000

b) 10 LET A= 1.1111111

c) 10 LET A= 1.7

d) 10 LET A= 1.7014118

e) 10 LET A= 1.71

What conclusion do you draw?

3 To show that negative numbers behave in the same way, change

line 10 to the following and run the program.

a) 10 LET A = - 1

b) 10 LET A= - 1.7

c) 10 LET A = - 1.7014118

d) 10 LET A=- 1.71

4 To show how small numbers are handled by your computer a

similar program divides a number (A) by increasing powers of

10.
Key in the program and run it.

10 LET A = 1

20 LET A = A/10

30 PRINT A

40 GOTO 20

Note the change of notation.

Notice that after IE - 38 the computer prints zeros

indefinitely, i.e. it has reached the smallest number it can

register.

5 Change line 10 to

a) 10 LET A = 3

b) 10 LET A - 2.9

and re-run the program each time.

Notice that 2.9387359E - 39 is the smallest number before

zero.

Write this number out in full.

Can you think of any applications for very large and very

small numbers?

113

6 Change the values of A in the program to negative values and

confirm that small negative numbers behave in the same way.

PROGRAMS TO SAVE IN YOUR TAPE LIBRARY

The following two programs should be keyed in, run, listed and saved

for your tape library. They both do what the previous programs did but

in addition give a printed copy of the results.

10 REM "LARGE NUMBERS"
20 REM** PROGRAM MULTIPLIES +

AND - NUMBERS INPUT FROM
THE KEYBOARD BY POWERS 0
F 10 **

30 REM **KEY IN VALUES FOR A 0
F +-1.,+-1.1111111,+-1.7, +
-1.7014118,+- 1.71.**

40 INPUT A
50 LET N=0
60 PRINT A*(10**N)
70 LPRINT TAB 10;A*(10**N)
80 LET N=N+1
90 GOTO 60

For the Spectrum, replace ** by f in lines 60 and 70.

10 REM "SMALL NUMBERS"
20 REM**PROGRAM SHOWS PRINTING

OF SMALL NUMBERS**
30 REM**INPUT VALUES OF A AS +

-1, +-2.9,+-3.**
40 INPUT A
50 LET N=0
60 PRINT A*(10**N)
70 LPRINT TAB 10;A*(10**N)
80 LET N=N-1
90 GOTO 60

J5: Rounding

ROUNDING UP

The computer will print out computed values to an accuracy

of 8 significant figures, ignoring leading zeros.

Digits after the 8th significant one will be rounded up. For

example, if we key in (as a direct command, followed by

NEWLINE/ENTER):

114

PRINT 0.111111111 + 0.888888888
the answer on the screen is l.Try

PRINT 0.0000111111
showing 10 digits can be held exactly.

Adding a one on the end forces the use of the E notation.

ROUNDING DOWN

The INT function returns the nearest integer of the

expression X, which is < = X, i.e. it rounds down,

e.e. INT 3.9 = 3

INT - 2.8 = - 3

INT (4-8.7+ 0.8)= -4

Try printing these functions. Notice that for negative

numbers - 6 is less than -5, and so on. To round to the

nearest integer add 0.5 to the number first:

e.g. INT (3.9+ 0.5) = 4

INT (2.4+ 0.5) = 2

INT (- 1.7 + 0.5)= -2

INT (-2.3+ 0.5)= -2

Notice this assumes that 0.5 rounds to 1.

INT (1.5+ 0.5) = 2

INT (- 1.5+ 0.5)= - 1

Notice we don’t have to enter the zero before the decimal point on the

computer (though it doesn’t matter if we do), it’s in that form here for

clarity.

J6: How Numbers are Handled

All computers perform their arithmetic and processing using

the BINARY NUMBER SYSTEM

In the binary system only two digits are used, 1 and 0. A group of 8

bin ary digits- (bits) is called a BYTE, and we communicate with the

computer in Decimal Notation. This is rather more convenient than

using Binary. Conversion from Decimal to Binary and vice versa is

thus necessary and occurs inside the computer.

One BYTE is equivalent to a single character of the computer’s

character set. A byte represents a number between 0 and 255

(decimal). This is why the character codes are in this range (see Section

P). A group of 8 zeros and ones can have 2° (= 256) different states.

A digit or number is represented by one or several bytes according to

its context in the computer.

115

A character input to the computer or output to the screen or printer

is held in one byte. Program line numbers, which are whole numbers 1

to 9999, are held in two bytes.

Numbers are held in a form which occupies five bytes. The point to

be noted here is that conversion from decimal to binary and back is

involved in the operation of the computer, and this conversion is not

always exact. This must be allowed for in certain circumstances,

especially where the computer is asked to check whether two numbers

are equal. A difference in the binary form of the number, however small,

will cause the computer to decide they are not equal. In testing two

numbers for equality, therefore, if non-integer values have been

utilised, and the value of one number arrived at by calculation, the

equivalence check should be replaced by assessing the difference. A

statement such as:

IF ABS(A - B) < IE - 4 THEN...

which checks that the difference between the numbers is less than

.0001, can be used instead of IF A = B THEN—, if either A or B has

been calculated.

The forms in which numbers are held in the computer are

considered in detail in Section U - the Computer Memory.

J7: Function

We define a FUNCTION as

Y = F(X)

‘Y equals some function of X, F(X)’

A function is the mathematical relationship between two

variables X and Y such that for each value of X there is a

unique value of Y,

Y takes the function value and is the DEPENDENT VARIABLE.

X is the ARGUMENT - the INDEPENDENT VARIABLE.

F is the function NAME, e.g. square root, sine, natural logarithm.

In a program statement we write, for example:

100 LET Y « SQR(X)

The argument X can be a single variable, a number or an expression.

If X is a single variable or a number it does not need brackets. If it is an

expression it requires brackets so that the expression is evaluated

before the function is applied to it (so that SQR 9 + 7 gives 10, whilst

SQR (9 + 7) gives 4). For example:

100 LET Y = SQR 9

100 LET Y - SQR(B**2 - 4*A*C) (Bf2 on the Spectrum)

We see that a function is a mathematical operation which gives a

number. It is treated in BASIC as a numeric expression, with priority

11.

The standard mathematical and trigonometric functions are

important timesavers for programmers. They are the same as the

function keys on scientific calculators. Other functions (utility

functions) control or monitor the handling of data by BASIC rather

than perform mathematics.

If the functions were not available in BASIC we would need to write

separate programs to undertake their tasks every time we had need of

them!

J8: List of Functions used in Sinclair BASIC

In this list of functions X is the argument. X is a variable, a number or

an expression. If an expression, X must be in brackets. Each of the

individual functions will be discussed in more detail later in this

section.

1. Standard Mathematical Functions:

ABS (X) - gives the absolute value of X

EXP (X) - gives ex, value of e raised to the power X

INT (X) - gives the largest integer < = X, i.e. rounds down

LN (X) - gives natural logarithm (value of loge X)

SQR (X) - value of \/~X or X^ (X positive)

PI - 3.14159265 i.e. value of rt, PI, which is how it

prints on screen

SGN (X) - gives sign of X, i.e. whether X is + ve, - ve or

zero.

Trigonometric Functions

SIN (X) - value of sine X (X in radians)

COS (X) - value of cosine X (X in radians)

TAN (X) - value of tangent X (X in radians)

ACS (X) - angle in radians whose cosine is X

- arccosine X(-1< = X<=1)

ASN (X) - angle in radians whose sine is X

- arcsine X(-1< = X<=1)

ATN (X) - angle in radians whose tangent is X

- arctangent X

3. Special Mathematical Functions

RND A random number generating function; gives the

next pseudo random number N from a fixed series

of random numbers (0 < = N < 1).

RAND (= RAND 0) starts the sequence of random

numbers in an unknown position.

RAND N (0 < = N < - 65535) makes RND always return to

the same value, if N is the same.

116 117

4. Character and String Functions

CHR$(X)

CODE A$

LEN A$

VAL A$

STR$ N

0< = X < = 255 returns the single character

whose code is X.

When applied to the string A$, it returns the

code of the first character in the string or 0 if the

string is empty (null string).

Returns the number of characters in the string.

Turns a string in number representation into

the number for calculation (e.g. A$ = “12.4”,

VAL A$ = 12.4),

Turns the number N into the string “N”.

5. Printing Functions used in the form PRINT F(X)

TAB (X) Places the print position in column X. If X>32

then column number is the remainder when X is

divided by 32. If it involves back spacing, goes

on to next line. Rounds X to nearest integer.

AT (X), (Y) Starts printing at line X, column Y

0 < = X < = 21 0 < = Y < = 31

Rounds X and Y to nearest integer.

6. Special Functions

INKEY$ No argument. Reads keyboard and senses what

key is being pressed at that time. Returns key

being pressed as a string, e.g. “A” or “8”, If no

key is pressed the null string is returned.

PEEK X 0 < = X < - 65535 Returns the value of the byte

at address X in RAM or ROM memory.

USR N Returns the contents of a pair of CPU registers

after running a machine code program from

address N.

N.B. For the Spectrum’s additional functions, see Section W. The

above functions, common to both the ZX81 and the Spectrum, are the

ones used in the main body of the text.

J9: The Function Characters

Each of the functions in Sinclair BASIC is represented on the

keyboard as a single character word.

You don’t have to type the function name letter by letter (if

you try to it won’t work), just press the particular function

key.

Each function character has a special character code and is

part of the computer’s character set. Each of the Function

characters on the ZX81 is situated at the same position on

each key, i.e. bottom outside.

To obtain the function the ZX81 must be in FUNCTION

MODE, with the F-cursor on the screen.

On the Spectrum, all functions are obtained in the

Extended mode with the E-cursor on the screen (for further

details see Section Wl). All FUNCTIONS treated here are in

green above the key on the Spectrum, with the exception of

ASN, ACS, ATN which are in red below the associated SIN,

COS and TAN functions, although they are still obtained in

the E-mode.
The FUNCTION/EXTENDED MODE only lasts for one

function. To obtain successive functions this mode must be

repeatedly entered.

J10: The Function Character Set

Character Code Code

(ZX81) (Spectrum)

SIN 199 178

COS 200 179

TAN 201 180

INT 207 186

RAND 64 249

STR$ 213 193

CHR$ 214 194

CODE 196 175

PEEK 211 190

TAB 194 173

ASN 202 181

ACS 203 182

ATN 204 183

SGN 209 188

ABS 210 189

SQR 208 187

VAL 197 176

LEN 198 177

USR 212 192

LN 205 184

EXP 206 185

AT 193 172
INKEY$ 65 166

NOT 215 195

Tt(PI) 66 167

118 119

These are the function characters as represented on the ZX81

keyboard. NOT is dealt with in Section R and INKEY$ in Section K

Note that ARCSIN, ARCCOS and ARCTAN are used on the ZX81

keyboard but print as ASN, ACS. ATN, and n prints as PI.

Jll: The Standard Mathematical Functions

ABS (X)

Returns the absolute value or modulus of the value X.

X may be a number, variable or expression.

ABS(X) gives us the positive value of X. For example:

10 PRINT ABS(- 3.7) gives 3.7

10 PRINT ABS (4) gives 4

Exercises

Key in and run this program:

10 INPUT A

20 INPUT B

30 PRINT TAB 3;A; TAB 10;B

40 PRINT TAB 3; ABS (A - B)

50 GOTO 10

Input positive and negative values for A and B.

Now change line 40 to:

40 PRINT TAB 3; ABS (A*B)

and input some more values. Try replacing the * with **
(f Spectrum), or using ABS (SQR A).

N.B. ABS (-3**3) , or expressions in similar form will not work

as the ** (f Spectrum) operator only works for positive first operands.

EXP (X)

Where X is a number or an expression EXP (X) gives the

value of the constant e raised to the power of the value of X
e = 2.7183

e.g. 10 PRINT EXP (3.4)

i.e. 10 PRINT (2.7183**3.4) (2.7183 f 3.4 on Spectrum)

The function EXP is the inverse to LN.

Exercises

1 Using log tables write a program to check the values of e* given
in the log tables.

2 Write a program which will calculate Qfrom the expression:

Q = Qo.e /rc (In BASIC Q= QO* EXP(- T/R*C))

jf you know anything about electricity, you might recognise this

expression.

3 Key in this program. It calculates a value for e from the formula:

e = (l + 1/N)**N (f N on Spectrum)

where N is very large. Spectrum users should replace ** by f in

lines 30 and 40.

10 REM “VALUE OF E”

20 LET I - 1

30 LET N = 10**1 [f Spectrum]

40 LET E = (l + 1/N)**N

50 PRINT TAB 1;N;TAB 12;E

60 LET 1 = 1+1

70 IF I - 5 THEN STOP

80 GOTO 30

LN (X)

Gives the value of the natural logarithm.

LN (X) = Loge (x)

Note that log10 (X) (common logarithm)

= (LN(X))/(LN 10)

The LN function is the inverse of EXP

So: If EXP (X) - Y

Then (X) = LN(Y).

LN (Y) is the natural logarithm of Y. The antilog is EXP(LN(Y)). The

normal log operations can be used if appropriate, as with common logs.

For example EXP(LN (X) + LN (Y)) gives the product of X and Y.

Exercises

1 10 LET Y = 1

20 PRINT TAB 3;Y; TAB 10;EXP (LN Y)

30 LET Y = Y + 1

40 GOTO 20

Key in and run this program which proves the relationship

between the EXP and LN functions.

2 Change 30 to: 30 LET Y = Y*10 and run again.

SQR (X)

The function SQR returns the square root of (X), \f (X) or

X05. For example:

120
121

PRINT SQR 9 gives 3

PRINT SQR 23 gives 4.7958315

PRINT SQR (19 + 17) gives 6

PRINT SQR (ABS - 25) gives 5

SGN (X)

SGN (X) returns + 1 if (X) is positive, 0 if (X) is zero, - 1 if

(X) is negative.

SGN is short for Sign or Signum (Signum doesn’t sound like

Sine), For example:

SGN 23 gives i

SGN -5 gives -1

SGN (3 - 3) gives 0
SGN 1 gives 1

SGN (25-(2*23)) gives - 1

n PI

n (which prints on the screen as PI) is a function which has no

argument. It returns the value of n as 3.1415927.

3.1415927 is what prints on screen for PI. How would you test whether

the computer held any more digits of PI in memory? What happens

when you take away 3 from PI?

J12: Trigonometric Functions

SIN COS TAN

The functions SIN (X), COS(X) and TAN(X) give the value of

the sine, cosine, and tangent of the number or expression X,

which is an angular measure. X must be in RADIANS.

We normally express angles in DEGREES.

1 DEGREE = ^L. RADIANS (1° = ^radians)

To convert degrees to radians multiply by PI/180. For

example, if Y is our measure of angle in degrees then:

SIN (Y*PI/180)

gives the correct value of Sine Y.

Exercises

1 Generate a table of values for SIN (X), COS (X) and TAN (X)

for every 20 degrees in the range 0 - 360 degrees.

2 Write a program to verify the trigonometric formula:

SIN2(X) + COS2(X) =1

1 -f TAN2(X) = SEC2(X)

3 Write a program to calculate the area of a triangle from a

knowledge of the length of 3 sides and an angle.

ACS ASN ATN

The functions:
ACS (X), ASN(X), ATN (X)

give the arc cosine, the arc sine and the arc tangent,

respectively, of (X).
The returned value is the angle in RADIANS for which the

cosine, sine or tangent would be given by the value of (X).

To get the angle in degrees multiply by 180/PI e.g.

Y= 180/PI*ACS(X) gives arcsin (X) in degrees.

Notice these functions print as above, but appear on the ZX81

keyboard as ARCSIN, ARCCOS, ARCTAN.

J13: Special Functions

Random number generators are useful for games and simulation in

statistics. The numbers generated are part of a very long sequence of

numbers (there are 65536 of them) and are in fact only ‘pseudo¬

random’, but good enough for our needs.

RND

RND gives a random number greater or equal to zero but less

than one.

10 LET A = RND

assigns a number in the range 0 < = N <1 to the variable A.

Notice RND has no argument.

If we key in PRINT RND we get a number like .0011251904 or

0.43715682 which is eight or ten digits long and is not much use to

anybody in this form.

We need to be able to generate random numbers within a useful

range, according to our purposes:

1. To obtain a Random Number 0-9

To obtain a random number from 0 - 9 we must multiply our

122 123

function by 10 and take the integer value.

i.e. PRINT INT (RND* 10)

RND*10 gives random numbers between 0.00000000 and

9.9999999. INT() will round these values down to integers
0 to 9.

2. Numbers 1-10

Although 0 to 9 gives us ten values the range 1 to 10 would be

more useful. This is obtained by adding one to the RND function*

PRINT INT (RND* 10 + 1)

Suppose we wanted random numbers generated for simulating a
dice roll, we would use:

PRINT INT (RND*6 + 1)

3. Random Numbers for a Card Game

There are 4 suits, with 13 cards per suit = 52 cards. So if we used*

PRINT INT (RND*52 4-1)

we could select cards at random.

Think about how you could identify the suits and not deal the
same card twice.

4. Tossing a Coin

There are two outcomes, head or tails, so:

10 LET A = INT(RND*2 + 1)

20 IF A = 1 THEN GOTO 50

30 PRINT “TAILS”

40 GOTO 10

50 PRINT “HEADS”

60 GOTO 10

This program will toss coins until we use BREAK.

50 IF C<6 THEN GOTO 30

60 GOTO 10

[ot amazingly random after all!

1 Write a program which throws three dice and prints the values

thrown across the screen.

2 Write a program to check that the number generated by RND

using RAND N is given by RND = (75*(N + 1) - 1/65536).

3 Modify the coin tossing program to count the number of times

heads or tails have come up (you need one variable for each).

When you’ve stopped the program by pressing BREAK, you

can then access the values by keying in PRINT HEADS, or

whatever your variable name is, as a direct command.

4 Write a program to print four groups of three random numbers

in the range 1 to 52.

RAND N

RAND is a keyword and is used for controlling the
randomness of RND.

The computer has a fixed sequence of 65536 jumbled up

numbers. RAND N will start RND reading numbers from the
Nth number in the sequence.

Key in and run this program to prove the above:

10 RAND 7

20 LET C = 1

30 PRINT RND

40 LET C = C + 1

124 125

SECTION K: STRINGS

Kl: Strings

A string is a set of characters enclosed by quotation marks,
e.g. “THIS IS A STRING” or the null string (no characters

Typical Strings: “BALL OF STRING”
“JANUARY 1ST 1982”
“URGHH!”
“FAB ** - +/!3”
“ ” (String of spaces)

“1234”
“” (Null string)

Computers handle two kinds of DATA:
NUMERIC - numbers

ALPHANUMERIC - names or TEXT.
The way a computer deals with text is called STRING HANDLING.
Strings deal with ALPHANUMERIC information.

The sequence of alphanumeric characters is handled in a string as a

single unit of data.
Characters are defined as LITERALS when placed inside quotes

“ ”. They are taken literally to represent themselves. Strings are

therefore literals.
Characters are IDENTIFIERS where they are not enclosed in

quotes. Thus, for example, A represents or identifies a numeric
variable and A$ identifies a string variable.

Strings can either be of FIXED LENGTH-e.g. always 10
characters long-or VARIABLE LENGTH. The fixed length is
determined by the string dimension instruction:

DIM A$ (N)
where N is the length in characters.

Characters which cannot be used in strings

A string cannot contain a character that is a line terminator:
NEWLINE (ENTER) or TAB. Nor can it contain any of the
following:

EDIT
GRAPHICS
RUBOUT (DELETE)
FUNCTION
BREAK
“ (single quotes)

All other characters in your computer’s character set can be used.
Run the program which checks this:

10 INPUT A$
20 PRINT A$
30 GOTO 10

Now try and input some of the above characters.
Examples of the sort of text we may want the computer to handle

law:
- a telephone directory
- names and addresses
- a timetable
- expenses details

Computers store all this textual information as strings.
String manipulation by the computer would, for our first example,

need to deal with:
creating the telephone directory
sorting the names and numbers into the correct order
searching the directory for somebody’s number
revising the directory, i.e. updating or adding an entry
printing out the directory in whole or part.

K2: Quotes and Quote Image

QUOTES

All strings are enclosed in quotes “” when:
(1) They are to be INPUT from the keyboard, as in a program
line such as: 10 INPUT A$. When the line is run the I Ll
cursor on the screen appears already enclosed in quotes “[Xl ”.
You key in just the characters wanted in the string.
(2) When used in programs with the PRINT instruction, e.g.
20 PRINT “STRING”.
(3) When assigned in a program to a string variable, e.g. 30
LET A$ = “STRING”.

THE QUOTE IMAGE KEY
ON THE ZX81

The QUOTE IMAGE is a special single character on the shift
keyboard of the ZX81.

<<>>

It is used to write ordinary quotes in the middle of a string,

e.g. 10 PRINT “SAY ““HELLO”” TOO”

126 127

When the line is run the double quotes will be printed on the screen as
single quotes:

SAY “HELLO” TOO

A special character is needed as two single quotes won’t work.

Key in and try to run each of the following lines:

10 PRINT “ SAY “HELLO” TOO”

10 PRINT “SAY”; “HELLO”; “TOO”

10 PRINT “ SAY ““HELLO”” TOO”

The Spectrum has no QUOTE IMAGE character. Instead, you must

put two quotes for every one you want printed. For example, to obtain

double quotation marks you type in PRINT”““ Single quotes

are obtained with PRINT”“ ””. Program listings look the same for
both machines.

K3: String Input

On running 10 INPUT A$ the letter cursor appears at the

bottom of the screen with quotes round it, prompting you to

key in characters for the string

“ 0 ”

On the Spectrum this can also be the C-cursor - “ [c]

STOPPING STRING INPUT

When keying in the characters for the string to be input notice

that BREAK and STOP have no effect.

To escape (1) Use the key to get |T] outside the quotes.

(2) Press STOP, NEWLINE (ENTER)

or

press IRUBOUT (DELETE) 1 | STOP|

There is a special form of string input, using the INKEY$ instruction:

INKEY$

When INKEY$ is encountered by the computer it reads the

keyboard to determine if a key is being pressed. It does not

wait for input like the INPUT instruction. If a key is being

pressed it returns the string containing the [T] mode

character of the key being pressed. If no key is being pressed
it returns the empty string

128

The Spectrum returns the £c] mode character with INKEY$ if in the

CAPS mode.

We can spend as long as we want before we input a string with the

INPUT command, since the cursor will remain on screen. If we want

to take advantage of the fact that, unlike INPUT, INKEY$ does not

require NEWLINE(ENTER) to be pressed, we must arrange a delay.
Try this program:

10 PRINT “PRESS A KEY WHEN READY”

20 IF INKEY$ = “ ” THEN GOTO 20 (no spaces)
30 LET A$ = INKEY$

40 PRINT “YOU PRESSED ”;A$

Line 20 sends the program back to the beginning of line 20 as long as

no key has been pressed. Line 30 makes A$ the single character string

returned by INKEY$ when a key is pressed.

Due to a design error the Spectrum has far less predictable keyboard

scanning using INKEY$ than the ZX81. If you type in the program as

above on the Spectrum it will work about half of the time. The rest of

the time it will skip over line 30. This program will work every time

though:

10 PRINT “ PRESS A KEY WHEN READY”

20 PAUSE 0

30 PRINT “YOU PRESSED ”;INKEY$

Experiment with the two versions to see this problem in action. The

action of PAUSE 0 is to stop until a key is pressed. The first key

pressed will be the INKEY$. PAUSE will be dealt with later, but

remember this quirk of the Spectrum, and this method of dealing with

it. The rule is to use PAUSE 0 immediately before INKEY$ is used in

a program line, to wait for input.

Now enter and run this program:

10 PRINT “PRESS 6”

20 IF INKEY$ = “”

THEN GOTO 20 (on the Spectrum 20 PAUSE 0)

30 IF INKEY$ = “6” THEN GOTO 60

40 PRINT “FOLLOW INSTRUCTIONS”

50 GOTO 20

60 PRINT “ENDING PROGRAM NOW”

70 STOP

Line 20 does the same as before, but line 30 now checks that the right

key has been pressed. Notice the 6 must be enclosed in quotes, because

INKEY$ returns a string. If 6 was pressed, the program goes to line 60.

If any other key was pressed, it goes to 40, prints the message, and then

is sent back (line 50) to line 20, which waits for another key to be
pressed.

Games programs, which require interaction, often use INKEY$ in a

loop, so that every time the program loops, it checks which key, if any,

is being pressed.

129

K4: Length of a String

LEN

The length of a specified string A$ is obtained by using the

function: LEN A$. The length is given as the number of

characters and is the current length of the string.

Spaces are included in the length of a string.

EXAMPLES

1 10 LET A$ - “SINCLAIR”

20 PRINT LEN A$

Check that the result is 8.

2 10 LET A$ = “A B” (9 spaces between A and B)
20 PRINT A$

30 PRINT LEN A$

Key in and run.

3 10 LET A$ = “PRINT”

20 PRINT A$

30 PRINT LEN A$

Key in the program first with PRINT formed from separate keys, and

then change line 10 so that PRINT is formed by pressing the j PRINT]
key. J

Why are the answers different?

4 10 INPUT A$

20 PRINT A$, LEN A$

30 GOTO 10

K5: Null Strings

A string with no characters is called a null string. For
example:

LET A$ = “”
The length of the string is 0.

A string which contains spaces is not a null string. A space is a character

obtained by pressing 1 SPACE I . The null string is returned by
INKEY$ if no key is being pressed.

Exercises

20 PRINT A$

30 PRINT LEN A$

2 Key in and run this program:

10 LETA$-“ ”

20 PRINT A$

30 PRINT LEN A$

K6; String and String Array Variables

A$

is a string variable used to store strings. It consists of a single

letter (A to Z), followed by the dollar sign.

Twenty-six variables of this type are thus possible.

The Spectrum accepts upper and lower case letters, but treats, e.g. k$

as the same string as K$.

A$(N)

is a string array variable or string list variable where N refers to

the number of strings in the list. String lists must be

dimensioned as an array before the string array variable can

be used, by the DIM (DIMension) instruction.

Using the array notation, an unlimited number of string

variables are possible.

Again, the Spectrum accepts upper and lower case letters, but does not

differentiate, e.g. b$(N) and B$(N) are the same.

Caution: A$(N) can have two meanings in a program.

(1) It can refer to the N’th character in a string A$.

(2) It can refer to the N’th string in a list or array of strings. In this

case the string array must previously have been dimensioned with a DIM A$(N)

instruction.

K7: String and String Array Dimension

STRING DIMENSION

DIM A$(N)

sets a fixed length of N characters for the string. For example:

10 DIM A$(6)

sets a length of 6 characters for the string A$.

1 Key in and run the following program;

10 LET A$ *

130 131

If strings of length <N (less than N characters) are assigned or input,

then space characters are added to make up the complete string of

length N. Spaces do not show up on the screen when they are printed!

(To check they are in the string we can ask for their character set code

to be printed using the CODE instruction. We'll get to this later.)

If more characters than the number allowed in the DIM A$(N)

statement are assigned from INPUT or LET statements they are

ignored. If strings are not dimensioned their length is effectively
unlimited.

The DIM statement fixes the length of a string until changed by

another DIM statement. LEN is thus not useful when strings are
dimensioned.

STRING ARRAY DIMENSION

The DIM statement for string arrays has the form:

DIM A$ (N,L)

where N = number of strings and L = the fixed length of each

string. A may be any single letter A to Z, but must NOT be

the same as a simple string variable. Each string is set to

contain L spaces initially.

For example, DIM A$(3,4) will reserve storage space for 3

strings, A$(l), A$(2), A$(3), each of length 4, in the string
array A$.

K8: String and String Array Assignment

STRING ASSIGNMENT

Strings are assigned to string variables using the LET or

INPUT instructions. For example:

LET A$ = “A STRING”

or INPUT A$

This establishes a value for the string.

As we shall see later, the value may be a literal value in quotation
marks, or a string or substring value.

STRING ARRAY ASSIGNMENT

5 DIM A$(3,9)

10 LET A$(l) = “SINCLAIR”

20 LET A$(2) = “COMPUTING”

30 LET A$(3) = “COURSE”

assigns 3 strings to the string array variable A$(3).

132

We can also use an INPUT instruction:

10 INPUT A$(l)

20 INPUT A$(2)

30 INPUT A$(3)

Exercises

1 Key in and run this program:

10 DIM A$(2,9)

20 LET A$(l) - “PERSONAL”

30 LET A$(2) = “COMPUTING ”

40 PRINT A$(l), A$(2)

2 Now key in and run this. Input different strings of varying

length. The string length is set at 8 in line 10.

10 DIM A$(3,8)

20 INPUT A$(l)

30 INPUT A$(2)

40 INPUT A$(3)

50 PRINT A$(l.)

60 PRINT A$(2)

70 PRINT A$(3)

3 Key in and run this program:

10 DIM A$(6)

20 INPUT A$

30 PRINT A$

40 PRINT LEN A$

50 PRINT A$;“END”

60 GOTO 20

line 10 sets a length of 6 characters for A$

line 20 asks you to input a string

line 30 prints the string

line 40 prints the size of the string in terms of characters

line 50 prints END starting directly after the 6th character in

the string

line 60 loops us back to input another string

a) INPUT less than 6 characters.

See that the remaining characters are spaces. Notice that

LEN A$ always gives 6 even though different numbers of

characters are input for A$.

b) INPUT 8 characters.

Notice the extra characters are ignored.

K9: Substrings and String Slices

A SUBSTRING or a STRING SLICE is any set of consecutive

characters taken in sequence from the parent string. For

133

example, for the string - “ABCDEFG”:

a substring is “CDEF”

or “ABC”

or “G”
A substring can be a single character.

SPECIFYING SUBSTRINGS

A$(P TO Q)

or

“ANYSTRING” (P to Q)

where P is the first character and Q, the last character of the

substring wanted in the strings A$ or “ANYSTRING”.

SUBSTRING ASSIGNMENT

Any substring is itself a string. We can assign a string to a substring:

10 DIM A$(12)

20 LET A$ (1 TO 4) = “JOHN”

30 LET A$ (6 TO 10) = “SMITH”

40 PRINT A$

This program assigns strings to substring variables.

EXAMPLES

1 10 PRINT “SINCLAIR” (2 TO 5) prints INCL

2 10 PRINT ‘SINCLAIR” (TO 3) prints SIN, since 1 is
assumed if it is omitted at the start.

3 10 PRINT “SINCLAIR” (3 TO) prints NCLAIR (omitting

a'ssumedT^1’ **** T° mGanS the last character in the string is

4 10 PRINT ‘SINCLAIR” (3 TO 3) prints N.

This is more conveniently written as

10 PRINT “SINCLAIR”(3)
or

10 LET A$ = “ SINCLAIR’ ’

20 PRINT A$(3)

which prints the 3rd character in A$, exactly as with a literal
string.

5 10 PRINT “SINCLAIR” (1 TO 0) prints “ ”

i.e. gives the null string (no characters).

6 Here is a program that uses names and numbers in single
strings: °

134

10 LET A$="NAME AGE"
20 LET B$="T0M 16"
30 LET C$="BILL 14"
40 LET D$="JANE 17"
50 PRINT AT 116fA$<1 TO 4>! AT

1i14;A$C6 TO 8)
60 PRINT AT 4>6?B$U TO 4)1 AT

4»14;B$(6 TO 7)
70 PRINT AT 7i6jC$(1 TO 4)1 AT

7»14JC$(6 TO 7)
80 PRINT AT 10?6?D$(1 TO 4)1

AT iO»14;D$<6 TO 7)

Notice how we spread the print out using substrings.

K10: String Concatenation

A$ + B$

Concatenation means chaining strings together. It is derived

from the word catenary meaning a chain. What the computer

does is to ‘add’ them together to form a new string.

“COM” + “PU” + “TER” = “COMPUTER”

10 LET A$ = “COM”

20 LET B$ = “PU”

30 LET C$ = “TER”

40 LET T$ = A$ + B$ + C$

50 PRINT T$

Note that the + operator is used for string concatenation.

We cannot subtract, multiply, divide strings or raise them to powers,

because they are not numbers. Although the ‘adding’ of concatenation

uses the same symbol it is not an arithmetic operation.

Key in and run the example program given above.

Add some DIM statements to the program:

2 DIM A$(6)

4 DIM B$(6)

6 DIM C$(6)

Run it. You will notice that although the strings are chained they are
far apart. Why is this?

Now try this program:

10 INPUT A$
20 INPUT B$
30 PRINT A$,B$,A$+B$

135

40 LET A$ = A$-fB$
50 PRINT A $
60 LET A$=A$+A$
70 PRINT A$

Notice in line 40 we have incremented the string by adding B$ on to

A$. This gives us a new A$ made up of the old A$ plus B$. The

statement in line 60 is equivalent, in string terms, to having a line

which for numeric variables says LET A = A + A.

Kll: Comparing Strings

The conditional operators:

<> <= < > = >

may be used between strings and string variables using the
IF... THEN instructions. For example:

IF A$ = “YES” THEN GOTO

IF N$ = B$ THEN PRINT

IF A$< = B$ THEN GOTO

When the computer compares strings of characters it does so by

comparing the codes of each of the characters in sequence. A string is

found to be less than another if it comes first in alphabetic order. If the

strings contain numbers we should remember that numeric codes are

less than alphabetic (letter) codes. This affects comparisons. (See
oection P for the character codes.)

Strings are compared in order of characters from left to rieht For
example: 6

“A”<

“AB”<

“A”<

“2”<

“A3”<

i l

< <

< c

< <

B”

AZ”

AA”

5”

A4”
“6”< “Q”

“3X”< “4A”

Key in and run the next program. Input the strings above plus others

you want to try and it will print out their relative alphabetic orders.

10 INPUT A$
20 INPUT B$
30 IF A$<B$ THEN GOTO 70
40 IF A$=B$ THEN GOTO 90
50 PRINT A$;">";B$
60 STOP
70 PRINT A$;"<«; B$
80 STOP
90 PRINT A$;"=";B$

100 STOP

This gives us a method for putting names into alphabetic order, like in

a telephone directory. We also have a method of searching it, since we

can check whether any name in the list is equal to the desired name.

We have already used string equality, but here’s another example of
string comparison:

10 PRINT "DO YOU UNDERSTAND STRINGS'?"
20 PRINT "ANSWER YES OR NO"
30 INPUT A$

40 IF A$ = "YES" THEN GO TO 70
50 PRINT "THEN READ THE SECTION AGAIN!"
60 STOP “ a

70 PRINT "YOU ARE A GENIUS!"
00 STOP

Key it in and run it. Do you understand?

The above assumes the use of capital (upper case) letters only on the

Spectrum. For lower case letters, these are all after upper case letters in

the ordering of strings. So on the Spectrum:

AA<Aa

Z<a

ZKzl

SMITH<Smith

So any ordering of strings must take this into account. For this text we
assume the use of capitals throughout.

Exercises

1 The TELEPHONE ’ program sets up a telephone directory

with names and telephone numbers. It will search through its

lists to find the telephone number corresponding to a given

name. Run and analyse the program to find out how it works.

10 REM "TELEPHONE"
20 REM ""PROGRAM SETS UP A TEL

EPHONE DIRECTORY AND USES IT"*
30 PRINT "HOW MANY NAMES DO YO

U WISH TO ENTER INTO THE DIRECTO
RY?"

40 INPUT N
50 PRINT
60 PRINT "INPUT ";N;* NAME (20

LETTERS) AND NUMBER(8 FIGS) PAIR
S"

70 DIM A$(N,20)
80 DIM B$(N,8)
90 DIM D$(20)

100 PRINT

136
137

110 PRINT

120 PRINT "NAME";TAB (22);"NUMB
ER"

130 PRINT
140 POR F=1 TO N
150 INPUT A$(F)
160 PRINT A$(F);
170 INPUT B$(F)
180 PRINT TAB (22);B$(F)
190 NEXT F
200 PRINT
210 PRINT

220 PRINT "TO CLEAR THE SCREEN
'TlO USE THE DIRECTORY PRESS CONT
AND NEW LINE KEYS"

230 STOP
240 CLS
250 PRINT
260 PRINT "WHAT NAME?"
270 INPUT D$

280 REM **NEXT PART OF THE PROG
RAM SEARCHES FOR THE NAME**

290 PRINT
300 PRINT D$;
310 FOR F=1 TO N
320 IF A$(F)=D$ THEN GOTO 370
330 NEXT F
340 PRINT

350 PRINT "NAME NOT FOUND"
360 GOTO 260
370 PRINT TAB (22);B$(F)
380 PRINT
390 PRINT

400 PRINT "ANOTHER NAME?(Y/N)"
410 INPUT Q$
420 IF Q$="Y" THEN GOTO 240
430 PRINT

440 PRINT "TO KEEP YOUR DIRECTOR

Y AFTER SAVING, USE ""GOTO 240""
WHEN RUNNING THE LOADED PROGRAM
, NOT ""RUN""."

450 PRINT
460 PRINT "BYE FOR NOW"
470 STOP

2 Modify “TELEPHONE” to create your own directory with

numbenendS’ namCS and addresses or birthdays or telephone

a) Redesign the program

b) Document it

c) Key it in

d) SAVE it

e) Debug it

f) LLIST it

g) SAVE the working version

h) Put it in your personal tape library

i) Enter details in your notebook

138

K12: Strings and Numbers

In addition to the handling of strings as strings, there are instructions

which enable us to convert strings to numbers, numbers to strings, and

to usefully manipulate various numerical values of strings and their

characters. We have already dealt with LEN. The other available

string functions are dealt with here. The first two instructions cover the

character set which is dealt with in Section P.

CODE AS

When applied to a string AS CODE returns the character set

code number of the first character in a string. For example:

10 LET X = CODE “MOTHER”

On the ZX81 X becomes 50, the code for M (CODE “M”).

When applied to a single character substring, it returns the
code of the substring:

e.g. 10 LET AS = “CODE”

20 PRINT CODE A$(3)

prints 41, the CODE for D (CODE “D”).

The Spectrum uses a different code to the ZX81 (called

ASCII, an international standard). Thus, CODE

“MOTHER” is 77, and CODE A$(3) in the above is 68
(= CODE “D”).

CODE AS (M,N)

When applied to a string array CODE returns the character

code of the N’th character in the M’th string. For example:

10 DIM A$(10,10)

20 LET A$(l) = “SINCLAIR”

30 LET A$(2) = “BASIC”

40 PRINT CODE A$(2,3)

will print 38 (CODE“S”) on the ZX81, whilst on the

Spectrum the ‘S’ in ASCII code is 83 (there is no significance

in one being the reverse of the other!).

CODE A$(2), applied to a string array as above, would return the

CODE of the first character in A$(2), just as when applied to a literal
string or string variable.

139

CHR$

When applied to a number N, CHR$ N gives the single

character string in the computer’s character set whose code is
the number N.

For example, on the ZX81:

CHR$ 49 is “L”

CHR$ 12 is “£”

whilst on the Spectrum CODE “L” is 76 and CODE “£” is

96, so CHR$ 76 gives “L” on the Spectrum, and CHR$ 96
gives “£”.

We can treat these characters as elements in a string and make up a

word by concatenation. Try this on the ZX81:

10 LET A$ = CHR$ 63 + CHR$ 61 + CHR$ 36 + CHR$ 29

20 PRINT A$

or this on the Spectrum:

10 LET A$ - CHR$ 83 + CHR$ 80 + CHR$ 69 + CHR$ 67

+ CHR$ 84 + CHR$ 82 + CHR$ 85 + CHR$ 77
20 PRINT A$

VAL A$

Applying VAL to a string containing only numeric characters

and arithmetic or logic operators, returns the result of the

arithmetic inside the string.

For example:

10 PRINT VAL “1+2 + 3”

prints 6

10 LET A$ = “3”

20 LET B$ = “4”

30 PRINT VAL (A$ + B$)

prints 7

All recognised arithmetic functions can be used:

10 PRINT VAL“SQR 16”

(prints 4)

10 PRINT VAL “ABS - 29”

(prints 29)

An interesting use of VAL is where alphabetic and numeric

information in a string can be treated as substrings. Arithmetic can

then be performed on the numeric substring. For example, try this

program which gives the total ages of three people in a group.

10 LET A$="SMITH 23H
20 LET JONES 34"
30 LET C$="WEST 17"
40 LET T= VAL A$<8 TO 9)4 VAL

B$C8 TO 9)4 VAL C$C8 TO 9’)
50 PRINT A$
60 PRINT B$
70 PRINT C$
80 PRINT ii“TOTAL AGE ">T?

n YEARS"

STR$

STR$ (N) returns the value of (N), a numeric expression, as a

string. For example:

STR$ 3.4 gives “3.4”

STR$ (3*31) gives “93”

STR$ (SQR 4) gives “2”

STR$ is the complementary or opposite function to VAL

To see STR$ in operation, and the complementary functions of VAL
and STR$, try this program:

10 LET X=3
20 LET Y=0. 5
30 LET A$= STR$ (X/Y)
40 PRINT A$, VAL A$
50 LET B$=A$+ STR$ X
60 PRINT B$, VAL B$/2
70 LET C= VAL (STR$ < VAL A$4

VAL B$)>
80 PRINT C

Exercises

1 Write a program which inputs a number of strings and

calculates the total number of characters in each, and the total

number of characters in all the strings .

2 Write a program which calculates the total price of items in a

shopping list, after receiving and printing out the string inputs of
each item and its cost.

3 Write a program which will print a calendar for any month of

next year. Key in the month names and lengths as a string in the
program.

140
141

SECTION L: LOOPS

LI: Loops

A loop is a block of instructions that the computer executes

repeatedly until a terminating condition is met.

The usefulness of loops can be seen by considering three forms of a

program to print out the first one hundred positive integers.

10 PRINT 1

20 PRINT 2

30 PRINT 3

1000 PRINT 100

This program, which does not use a loop, is 100 statements long. This

next program uses a conditional jump loop which does the same thing and
uses only five statements.

10 LET C = 0

20 LET C = C + 1

30 PRINT C

40 IF C < 100 THEN GOTO 20

50 STOP

The third program uses a FOR —NEXT loop which is the commonest

method of looping in BASIC, and the most economical in program
lines.

10 FOR F - 1 TO 100

20 PRINT F

30 NEXT F

40 STOP

All loops have four characteristics:

1 Initialisation (start value of counter)
2 BODY of loop

3 Modification of counter

4 Exit condition.

Loop structures may be properly formed in two ways:

1 CONDITIONAL GOTO STATEMENT LOOPS
2 FOR NEXT LOOPS

Loops are extremely useful. They allow repeated procedures to be

performed, and the values of the counters, which are modified each

time the program passes through the body of the loop, may also be used
in calculations, if care is taken.

142

L2: Counters

Here are two examples of the use of the conditional GOTO loop:

10 LET C=0
20 LET C=C+1
30 PRINT "COUNTING"
40 IF C <= 10 THEN GOTO 20
50 PRINT "FINISH"

10 LET »>0
20 LET C=€+l
30 INPUT A
40 PRINT A
50 IF C<10 THEN GOTO 20
60 PRINT "END OF NUMBERS"

The variable C is used as a counter in these programs, adding 1 every

time the program loops. If the value of C is less than the value set then

the GOTO statement is executed and the program loops. If it is greater

then control passes to the next program line. This enables us to control

the number of times the program lines within the loop are executed.

Our procedure for using counters in the example programs above is:

1 Initialise the counter

2 Increment the counter (add 1)

3 Do the task

4 Check the counter. If it has not reached the final value then go

back to item 2. If it has then program exits from the loop.

Note that we can perform the incrementation of the counter in a

different place:

1 Initialise

2 Do the task

3 Increment counter

4 Check the counter. If less than specified value, GOTO 2. If

more than specified value, program exits from the loop.

We must be careful to set the conditions properly to achieve our desired

result (the correct number of passes through the loop). Look at the first

two simple programs above again. How many times will each of them

pass through the body of the loop? Which is wrong if we wanted to loop

exactly ten times? If you don’t see the answer, key them in and run

them.

The GOTO statement in the program below enables the program to

loop continuously between lines 50 and 80. This would continue

indefinitely so it is important to get out of the loop at the appropriate

point. This is achieved by line 60 utilising the IF (condition) THEN

GOTO (line-number) statement. Notice that the value of the counter

(N) is used inside the loop:

143

10 REM "SIMPLE!'1
20 PRINT "SEVEN TIMES TABLE"
30 PRINT "UP TO TIMES 20"
40 LET N=0
50 LET N=N+1
60 IF N>20 THEN GOTO 100
70 PRINT Ni7*N
80 GOTO 50

100 REM **END**

Notice that the counting procedure in this program is set up differently

again. Line 50 increments the counter. Line 60 checks the counter

value. In this case, the IF-THEN statement has the effect of

transferring control out of the loop if the counter exceeds 20, with the
GOTO 100 statement.

The procedure in this case is:

1 Initialise

2 Increment

3 Check counter. If greater than specified

value, jump to program end.
4 Body of loop

5 Return to 2.

Key in the program. Run it to check it loops exactly twenty times.
Then EDIT line 60, to insert:

75 IF N> 20 THEN GOTO 100

and delete line 60. Now run it. It is surprisingly easy to miss the

desired number of loops, if you are not careful with the structure of the

loop, and the exit conditions. (Change N>20 in line 75 to N> = 20 and

the program will loop the correct number of times).

Different procedures using counters give different program

structures. Look at the flowcharts of different counter procedures.

Remember that the conditional test can put to use the >,<,>= ? < =
= operators, as appropriate.

144

COUNTER FLOWCHARTS

145

Exercise

Consider a simple program to work out the squares of the first 20
integers.

10 PRINT "NUMBER", "SQUARE"
20 LET N = 0
30 LET N=N + 1
40 IF N>20 THEN GOTO 70
50 PRINT N,N*N
60 GOTO 30
70 REM*END OF PROGRAM*

146

The GOTO statement in line \60 will cause the program to loop

continuously between lines 30 and 60.

This would continue indefinitely but line 40 is inserted so that the

program jumps out of the loop when N>20.

N is used as a counter. Line 20 initialises N and line 30 increments

N by 1 each time the program goes round the loop.

Write a program which calculates and prints the square and the cube

power of even numbers between 10 and 30. The counter will need to be

incremented by 2 each time the loop is executed by a GOTO

statement.

Write a program which loops 10 times (counter 1 to 10) but uses

another counter to print the squares of the ten numbers 5.25, 5,0, 4.75

.3.0.

L3: For - Next Loops

This is a more convenient way of having a program loop. The loop is

set up with the FOR... TO ... STEP and NEXT instructions used in

combination. The loop goes from the first value to the last value,

counting by adding the defined STEP value every time it loops until

the exit condition is met.

FOR (variable) = (first value) TO (last value) STEP (step)

FOR C = (N) TO (M) STEP (X)

where C is the counter variable or control variable of the loop

and (N), (M) and (X) are numeric expressions.

C can be any single letter A to Z. It must not be the same as

a single letter numeric variable. It is initialised at value (N).

(N), (M) and (X) may take any values, positive or negative, as

long as repeated additions of (X) to (N) will reach (M). If

STEP is omitted, 4- 1 is assumed. NEXT C indicates last line

of the loop. It adds (X) to C and loops back if the total is less

than (M). The program loops back to the line after the line

with the FOR - TO - STEP instruction.

The FOR - NEXT loop has a fixed procedure, unlike loops formed

with conditional GOTO instructions.

We form a FOR - NEXT loop in a program like this:

10 FOR F = 0 TO 100 STEP 2

(Body of loop

40 NEXT F

The FOR statement initialises the loop.

0 is the start value

100 is the stop value

F is the counter variable and is initialised as 0

STEP 2 is the increment.

147

NEXT F is the last line of the loop and increments

the counter F by the STEP value.

We can also decrement the counter (decrease it). For example:

10 FOR F = 100 TO 0 STEP - 2

(where the decrement is 2)

The loop will be exited in the first example when F>100 and in the

second when F<0. F will take values 0, 2, 4 98, 100 in the first

case, and 100, 98 4, 2, 0 in the second. Any program lines in the

body of the loop will be repeated each time the program loops.

Try these simple examples:

10 FOR F = 2 TO 4 STEP 1. 3
20 PRINT F
30 NEXT F

10 FOR F=4 TO -1 STEP -1
20 PRINT F
30 NEXT F

10 FOR F=-2 TO 4 STEP 2
20 PRINT F
30 NEXT F
40 PRINT
50 PRINT "F EQUALS ";F;" ON EXIT"

Convince yourself that this doesn’t work:

10 FOR F = 2 TO 4 STEP - 1

20 PRINT F

30 NEXT F

The next one is an interesting example of the inaccuracies in the

computer’s arithmetic:

10 FOR F-1.2 TO -0.3 STEP -0.2

20 PRINT F

30 NEXT F

The only reason for using F as the control variable is that it is

convenient: FOR F can be entered just by pressing the F key twice.

You can use any letter, but it is good personal programming practice to

use the same letters consistently, and not use these for single letter

variables. ‘F is often used by programmers as a control variable (I for

Integer) but can be confused in program listings.

This next example uses N:

10 FOR N = 1 TO 15 STEP 1

20 PRINT N,N*N

30 NEXT N

We can use the value of the control variable in calculation within the

loop. Edit STEP 1, so that line 10 reads:

10 FOR N = 1 TO 15

and run it again. STEP may only be omitted for a STEP of + 1.

In the program, line 10 allows N to go from 1 to 15 with a step value

of 1. That is to say, N takes the values, 1,2,3, 4, 5, 6, 6, 8, 9, 10, 11,

12, 13, 14, 15 each time performing the calculations within the loop.

The next program illustrates the use of different values for the step.

The value can be positive or negative, integer or non-integer. In the

case of decimal increments or decrements there is the possibility of

rounding errors if the loop is executed many times - it is therefore

advisable to use integer values for the step and divide by the

appropriate power of ten, if the loop variable is to be used in

calculations. If this were done in the program below, lines 130 and 140

would read:
130 FOR N = 10 TO 56 STEP 7

140 PRINT N/10; TAB 8; (N/10)**2;

TAB 16; (N/10)**3 (f on Spectrum)

The program calculates squares and cubes for:

1,4,7,. 31 (line 20)

120, 115, 110,. 60 (line 70)

1, 1.7, 2.4,. 5.6 (line 130)

Once again, Spectrum owners should remember that their machine

uses the ‘up-arrow’ (f) rather than the ZX81’s stars (**) to represent

‘to the power of’.

5 REM "MULTILOOP"
10 PRINT "NUMBER"; TAB 8; "SQ

UARE"; TAB 16; "CUBE"
20 FOR N=1 TO 31 STEP 3
30 PRINT N; TAB 8; N**2; TAB 1

6; N**3
40 NEXT N
45 PRINT "TYPE CONT KEY"
50 STOP
60 PRINT "NUMBER"; TAB 8; "SQU

ARE"; TAB 16; "CUBE"
70 FOR N=120 TO 60 STEP -5
80 PRINT N; TAB 8; N**2; TAB 1

6; N**3
90 NEXT N

100 PRINT "TYPE CONT KEY"
110 STOP
120 PRINT "NUMBER"; TAB 8; "SQU

ARE"; TAB 16; "CUBE"
130 FOR N=1 TO 5.6 STEP .7
140 PRINT N; TAB 8; N**2; TAB 1

6; N**3
150 NEXT N

In this next program the total is represented by T which is initialised

equal to zero (line 10). Each time the program goes through the loop

the INPUT number is added to T (line 40) so that when the loop (lines

20 to 50) is exited T represents the sum of the ten numbers input. The

148 149

program evaluates the average by dividing the total by the number of
numbers input,

5 REM “AVERAGE”

10 LET T = 0

20 FOR N = 1 TO 10
30 INPUT X

40 LET T = T + X

50 NEXT N

60 PRINT *4 AVERAGE = ”; T/10

This program illustrates a loop used to print a table. In this case a

heading is given (line 70) and this must be outside the loop as it is only

required at the beginning. We require all names and ages to be

tabulated so the print statement doing this (lines 140, 150) must be

within the loop. Finally, we require the average age, which is to be

printed underneath, and so the print statement (lines 170, 180) is

inserted after the loop has been completed.

10 REM "LOOPS3"
20 PRINT "THIS PROGRAM PRINTS

OUT THE NAME AND AGE OF A
GROUP OF PEOPLE AND WORKS
OUT THE AVERAGE AGE"

30 PRINT
40 PRINT "INPUT NUMBER IN GROU

P"
50 INPUT X
60 LET T=0
70 LPRINT "NAME", "AGE"
80 FOR N=1 TO X
90 PRINT "INPUT NAME"

100 INPUT N$
110 PRINT "INPUT AGE"
120 INPUT A
130 LET T=OHA
140 PRINT N$,A
150 LPRINT N$,A
160 NEXT N
170 PRINT "AVERAGE AGE="; T/X; "

YEARS"
180 LPRINT "AVERAGE AGE"; T/X;"

YEARS"

The flowchart of a FOR - NEXT loop would be drawn like this, if we

used the standard set of symbols as presented in the unit on
programming:

So for a program like the following:

10 FOR F= 2 TO 4 STEP .5

20 PRINT F*F

30 NEXT F

40 PRINT “END”

the flowchart would be like this:

150 151

Our example program would be represented like this:

However, FOR - NEXT loops are used so frequently that this is a

somewhat inefficient way of representing a loop of this type. There is L4: Loops of Variable Length

another symbol often used, although it is not a standard symbol, which

condenses all the required information. This has the form: The first value, final value and step of a loop may have any values

(including variables which may be specified using INPUT). The first

example shows a simple program which allows all conditions in the

FOR statement to be specified using the INPUT statement..

152 153

10 REM "VARLOOP"

15 PRINT "TYPE INITIAL VALUE"
20 INPUT I

25 PRINT "TYPE FINAL VALUE"
30 INPUT F

35 PRINT "TYPE STEP"
40 INPUT S

45 PRINT " X" , " X**2 +4*X-3" f t Spectrum]
50 FOR N = I TO F STEP S apectrumj

60LETY=N**2+4*M-I r a q , i
70 PRINT N,Y ft Spectrum]

80 NEXT N

It is important in such calculations to avoid the case where ‘division bv

shown°bXw-A SimPlC CXampIe °f h°W this may be done (Hne 40) is

5 REM "DIVZER"
10 PRINT "X","l/(X-3)"
20 PRINT

30 FOR N=-9 TO 15 STEP 3
40 IF N-3=0 THEN GOTO 80
50 LET Y=l/(N-3)
60 PRINT N,Y
70 GOTO 90

80 PRINT N,"INFINITY"
90 NEXT N

The final program in this section illustrates another way of having a

variable loop size. The operator may use this program for any number

of numbers between 1 and 100, A marker (in this case - 1) is set to

(lin^691 Xh“J"* COmple>e’ a,lowing a jump out of the loop
1 Aw ™ a dummy value’ - a value not normally entered

(N.B. DO A70TJUMP INTO THE MIDDLE OF A LOOP i e a

loop must always be entered from the FOR statement.)

5 REM "STDDEV"
10 LET T=0
20 LET S=0
30 LET C=0

40 PRINT "THIS PROGRAM WORKS 0
UT AVERAGE AND STANDARD DEV
IATION OF A SET OF NUMBERS"

50 PRINT

60 PRINT "TYPE NUMBERS ONE AT
A TIME,TO FINISH TYPE -1"

70 FOR N=1 TO 100
80 INPUT X
90 IF X=-l THEN GOTO 140

100 LET T=T+X
110 LET S=S+X**2
120 LET C=C+1
130 NEXT N
140 PRINT

150 PRINT "AVERAGE IS ";T/C
160 PRINT "STANDARD DEVIATION I

S ";SQR (S/C- (T/C) **2)

[f Spectrum]

[f Spectrum]

154

The procedure used in this program can confuse the flow of a program

and must be used with care. It is useful on occasion, but it is preferable

to have only one entry and one exit from a loop. In this program, the

loop may be exited from line 90 in addition to the normal termination,
when N>100.

L5: Nested Loops

We can place one loop inside another loop, so that every time the

program goes through the outside loop, it will perform the inner loop

sequence. The inner loop must be entirely within the outer loop. Loops

are said to be NESTED one inside the other. Loops can be nested to

any depth, i.e. we can have as many loops as we wish, as long as
they’re correctly arranged.

To have a third loop correctly placed, it would have to be inside the B

(Inner) Loop, or outside the A (Outer) Loop.

Be careful to avoid crossing the loops:

10 FOR A = 1 TO 6 -—-—,

20 FOR B = 1 TO 3 —-U-,

60 NEXT A

80 NEXT B

Programs with wrongly arranged loops will run, without giving an

error message, but won’t give you the correct answers!

To illustrate the use of nested loops, here are two programs. The first

evaluates and prints out the squares, cubes and fourth powers of the

first ten integers. Each number (N = 1 TO 10) is to be raised to the

appropriate power (E = 1 TO 4). Note that the loops are correctly
nested.

20 FOR N = 1 TO 10

30 FOR E = 1 TO 4

50 NEXT E

70 NEXT N

155

5 REM "NEST1"

10 PRINT "NUMBER";TAB 7;"SQUAR
E";TAB 14;"CUBE";TAB 21;"4T
H POWER"

20 FOR N=1 TO 10
30 FOR E=1 TO 4

40 PRINT TAB (E-l) *7;N**E; [f Spectrum]
50 NEXT E
60 PRINT
70 NEXT N

You will get a printout that starts off like this:
ATTTA /rnoo . _ _
NUMBER SQUARE CUBE 4TH POWER
1 1 1 1
2 4 8 16
3 9 27 81
4 16 64 256

The flowchart for the “NEST1” program, using the flowchart symbol

for FOR - NEXT loops we have introduced, will look like this:

We can see the sequence of operations by tracing the program.

I
Line 20: N = 1 pqsj _ g

I r a i—x .—. I l __,
Line 30: E = 1

I
Line 40: N**l = 1

Line 50: 1——_

Line 60: PRINT etc.

Line 70: [_

N**2 = l N**3=l N**4=l N**l = 2 N**2 = 4

I-M—J LJ I_

This table uses the ZX81 symbol for exponentiation. Notice how line
40 uses the value of E to format the output.

The second example assumes that a company employs three

salesmen who keep sales figures for each week. At the end of four weeks

the company requires a summary of sales to be printed. Each salesman

S (1 TO 3) has weekly takings W (1 TO 4). Notice again that the loops
are nested within each other.

|- 30 FOR S = 1 TO 3

70 FOR W = 1 TO 4

110 NEXT W

130 NEXT S

NAME WEEK1 WEEK2 WEEK3 WEEK4

JONES 12 16 19 13

BROWN 23 26 29 21

SMITH 31 4 6 39

10 REM *NESTED*
20 LF'RINT "NAME"! TAB 6; "WEEK1

"" TAB 13f"WEEK2"! TAB 20f"WEEKS
"! TAB 27?"WEEK4"

30 FOR S=1 TO 3
40 PRINT "INPUT SALESMANS NAME

50 INPUT N$
60 LPRINT N$;
70 FOR W=1 TO 4
80 PRINT "TYPE WEEK ";W;" SALE

C;U

90 INPUT X
100 LPRINT TAB <7*W-1)FX
110 NEXT W
120 LPRINT
130 NEXT S

157

Exercises
SECTION M: PLOTTING

Write programs using loops to perform the operations stated:

1 Calculate the reciprocals (1/N), logarithms (LN N) and cubes

(L**3 or L f 3) of even numbers between 20 and 36 and print
them out in a table.

2 An object is dropped and the variation of distance s with time t is

given by s = 4.9t2. Print a table of the distances fallen for each

second from 1 to 15 seconds.

3 Evaluate and print the values of 3X2 + 4X - 7 for values of X

between 6 and 8 in steps of 0.25.

4 Evaluate SIN X for values of X from 0° to 360° in intervals of

10°. Remember you must convert from degrees to radians.

Print out the results in two columns.

5 Print a table of the discount at 5 %, 10%, 15 %, 20 % on articles

from £100 to £200 in steps of £10,

6 Find the sum of all odd numbers between 39 and 75.

7 Find the sum of the series 1,1,2,3,5,8,. . . (Fibonacci) to 20

terms. (Each term is the sum of the previous two terms.)

8 Find all numbers less than 50 which can be written as the sum of
two squares, (e.g. 13 =* 22 + 32)

9 A ball is dropped from a height of twenty metres and rebounds

one-half the height on each bounce. What is the total distance it

travels? Assume the ball stops bouncing on its hundredth
bounce.

Ml: Plot and Unplot

The screen size is the same on both the ZX81 and the Spectrum. It is

divided into 24 x 32 character cells in the same way for printing on the

screen. The bottom two lines are reserved for use by the computer.

However, the plot screens of the ZX81 and Spectrum differ. The

principle is the same, that of dividing up the screen into small squares,

each of which can be blacked in separately, but the Spectrum has a

higher resolution plot screen than the ZX81. This means that the

screen is divided up into smaller squares (called pixels, short for picture

elements) on the Spectrum. The Spectrum has extra graphics

commands not available on the ZX81 which make use of these pixels,

some of which are mentioned in this Unit, but are dealt with fully in

Section W. The commands are also different on the two machines, so

we will describe the two separately before dealing with some of the uses

of these commands.

Spectrum users should note the principles of plotting as presented

here (even where we note that a particular process is easier using one of

the Spectrum graphics commands, since it is the principles that are

important, and can be extended to more complex tasks), and not just

feel superior to the ZX81 user, who has no access to CIRCLE or
DRAW!

On both machines each pixel is specified by X,Y co-ordinates. Thus,

on the ZX81 (0,0) is the bottom left-hand corner and (63,43) is the top

right-hand corner. There are 4 pixels in each character cell.

PLOT X,Y - blacks out the picture element (pixel) with co¬
ordinates X,Y.

UNPLOT X,Y - blanks out the pixel with co-ordinates X,Y.

The PLOT co-ordinates run from 0 to 63 across the screen left

to right (X co-ordinates) and from 0 to 43 up the screen

bottom to top (Y co-ordinates).

As a memory aid, remember that X is 'a cross’, and X before Y.

It is a simple matter to print horizontal and vertical lines. This

program plots a horizontal line across the screen:

10 FOR N = 0 TO 63

20 PLOT N,20

30 NEXT N

See if you can write a program that plots a rectangle.

Each of the character cells on the Spectrum’s screen has 8 x 8 = 64

pixels, and there are thus 176 in any column up the screen and 256 in

any line across the screen. Once again specifying each pixel with X and

Y co-ordinates, 0,0 is the bottom left-hand corner and 255,175 is the
top right-hand corner.

Whilst PLOT X,Y on the Spectrum blacks in the pixel element in

158 159

exactly the same way as on the ZX81, there is no UNPLOT statement

on the Spectrum. To erase the dot again the OVER 1 facility is used,

hus, to erase at X,Y you must enter a multiple statement line.

OVER 1: PLOT X, Y - blanks out the pixel at co-ordinates X, Y

Although it is perfectly possible to plot a horizontal line to the screen
using a program similar to that used on the ZX81:

10 FOR N = 0 TO 255

20 PLOT N,20

30 NEXT N

it is far simpler on the Spectrum to use the following type of
formulation:

.10 PLOT 0,20: DRAW 255,0
It is also possible to get some semblance of motion. The program below
moves a dot across the screen:

1 a uod the Spectrum
10 FOR N = 0 TO 63 10 FORN=0TO255

20 UNPLOT N- 2,20 20 PLOT OVER 1; N - 2 20
30 PLOT N,20 30 PLOT N,20

40 NEXT N 40 next N

It is possible to construct simple shapes using PLOT. Here is a ZX81
routine to draw a (somewhat stylised) dog:

10 LET X=0
20 LET Y=10
30 PLOT X,Y
40 PLOT X+l,Y-l
50 FOR N=2 TO 4
60 PLOT X+2,Y-N
70 NEXT N
80 PLOT X+3,Y-2
90 PLOT X+4,Y-2

100 FOR N=1 TO 4
110 PLOT X+5,Y-N
120 NEXT N
130 PLOT X+6,Y
140 PLOT X+7,Y-l

It can sometimes be worth remembering that the PLOT pixels are not

exactly square. The visible variation from square will depend on the

type ol plotting being done, and the particular TV screen in use. It is

worth drawing what should be a square on the screen, and simply

measuring the variation with a ruler. Try running this program, and

do this for different areas on the screen, so that you can check if the

variation is constant. Note the double loop, which is often useful in
ri^UI routines.

On the ZX81

10 FOR F= 10 TO 30

20 FOR L= 10 TO 30
30 PLOT F,L

40 NEXT L

50 NEXT F

On the Spectrum

10 FOR F= 10 TO 100

20 FOR L= 10 TO 100
30 PLOT F,L

40 NEXT L

50 NEXT F

160

The variation from square on the screen is typically in a ratio between

1,1:1 and 1.2:1 (across screen/down screen). This means a ‘square’

that looks square will need to be 10 pixels across and either 11 or 12
pixels down.

Most PLOTting is done utilising loops. To PLOT a circle we need

to choose a suitable STEP value for a loop that runs either from 0 to

360 (degrees), or 0 to 2 PI (Radians). We also have to set a centre to

give us a circle where we want it, and a radius such that it will fit the

screen. For a circle in degrees, code in this program:

On the ZX81 On the Spectrum

10 FOR D = 0 TO 360 STEP 10 10 FOR D = 0 TO 360 STEP 2

20 LET R = D*PI/180 20 LET R = D*PI/180
30 LET X = 30 + 20* COS R 30 LET X= 120 + 80* COS R
40 LET Y = 20 + 20* SIN R 40 LET Y = 80 + 80* SIN R
50 PLOT X,Y 50 PLOT X,Y
60 NEXT D 60 NEXT D

Line 20 converts to radians, in which all the trigonometric functions of

the computer work. Line 30 calculates the horizontal component, and

line 40 the vertical. The SIN and COS functions are multiplied by 20

(80 on the Spectrum) to give a radius of 20 pixels. The centre is set for

the ZX81 at pixel 30, 20, and for the Spectrum at pixel 120, 80. In

most cases, it is convenient to consider the PLOT screen to be 60 x 40

pixels (ZX81), rather than 64 x 44, in order to set scales and position

plots on the screen, and 240 x 160 similarly for the Spectrum.

Having set the basic values, we can introduce variations within the

loop into the above program. We can calculate the radius value and get

a spiral plot. Alter the program to:

10

For the ZX81

FOR D = 0 TO 360 STEP 10 10
For the Spectrum

FOR D = 0 TO 360 STEP 2
20 LET Z = D*PI/180 20 LET Z = D*PI/180
30 LET R = Z*3 30 LET R = Z*10
40 LET X = 30 + R*COS Z 40 LET X = 120 + R*COS Z
50 LET Y = 20 + R*SIN Z 50 LET Y = 80 + R*SIN Z
60 PLOT X,Y 60 PLOT X,Y
70 NEXT D 70 NEXT D

Calculating additional values, all within the loop, and using the loop

values as a basis, provides complex shapes fairly easily. Alter the first
three lines of the program:

For the ZX81 For the Spectrum
10 FOR D = 0 TO 360 STEP 5 10 FOR D = 0 TO 360
20 LET Z = D*PI/180 20 LET Z = D*PI/180
30 LET R = 20*SIN(Z*4) 30 LET R = 60 *SIN(Z*4)

RUN it. From a simple circle, we now have the basis for a polar graph

plot and can identify a scale of values for PLOTting that will fit the

screen. Similarly using parametric equations for the ellipse on the

ZX81, X goes from 10 to 50 as COS goes from - 1 to 1 and Y from 10

161

to 30 as SIN goes from - 1 to 1 round the circle. Notice this uses

radians directly (2*PI radians = 360 degrees). Spectrum plot points are
multiplied by 4.

For the ZX81

10 FOR N = 0 TO 2* PI STEP PI/20

20 PLOT 30 -f 20*COS N, 20 + 10*SIN N

30 NEXT N

For the Spectrum

10 FOR N = 0 TO 2*PI STEP PI/180

20 PLOT 120 + 80*CO8 N, 80 + 40*SIN N
30 NEXT N

Try altering the multiplication factors in line 20 for different ellipses.

Alter the STEP value to get a continuous line.

Of course, on the Spectrum a simple CIRCLE statement enables us

to achieve the same result demonstrated in our first example much
more quickly. For instance:

CIRCLE 128,88,50

will draw a circle of radius 50 pixels with its centre in the middle of the

screen. This is included with the additional Spectrum functions in

Section W. Note however that the calculated circles are more accurate

than the ones drawn using CIRCLE, but a lot slower to PLOT!

Exercises

1 PLOT the extreme corner pixels, measure the rectangle and use

the computer in command mode to calculate the proportions of a
pixel rectangle on your screen.

2 PLOT a circle, using radians directly, without a degree

conversion, with another circle, half the radius, inside.

3 PLOT a more accurate circle with allowance made for the pixels

being non-square, by altering the multiplication factors for
either COS or SIN.

4 Change the spiral routine to produce a double spiral (i.e. going
round the circle twice).

5 Experiment with the rosette producing program. Alter the

values of R in line 30 by changing the factor by which Z is

multiplied. Try Z**2 (Z f 2 on Spectrum) and similar
expressions.

M2: Graph Plotting

Simple graphs may be plotted using the PRINT functions already

encountered. The following program illustrates its use for drawing a

histogram. Lines 20 to 70 allow twelve values to be input and make Z

the largest value input. Lines 90 to 150 plot out the histogram allowing

the maximum value (i.e. Z) to be 25 columns long and all the others are
drawn in proportion.

10 REM "HISTO"
20 DIM M(12)
30 LET Z-0
40 FOR N=1 TO 12
50 INPUT M<N)
60 IF M(N) > Z THEN LET Z^M(N)
70 NEXT N
80 REM **PLOT**
90 FOR N=1 TO 12

100 PRINT N;TAB 4;
110 FOR L~1 TO M(N) STEP Z/25
120 PRINT
130 NEXT L
140 PRINT
150 NEXT N

Result:

2
3
4
5
6
7
8
9

10
11
12

AAAAAAAAAAAAAAAAAAAA?!r

A * A A

AAAAAAAAAAAAAAA

AAA A* A A A

AAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAA

A

AAAAAAAAAAA

AAA AAAA

AAAAAAAAAAAAAAAAAAAAA

A A A A

AAAAAAAAAAAAAAA

The STEP value in the program above is a SCALE FACTOR. The

use of a suitable scale factor is needed in most graphical routines. Here

is another version of a barchart program that identifies the scale factor

and uses it to multiply the values to be plotted out using the asterisks.

(The graphics characters can be put to use to draw solid bars, where

the asterisk is used here.)

10 REM *BARCHART*
20 PRINT "ENTER MAX VALUE"
30 INPUT M
40 LET SCALE=25/M
50 PRINT "ENTER VALUES (MAX 2

0) ENTER -1 TO FINISH"
60 PAUSE 150
70 CLS
80 FOR F=1 TO 20
90 PRINT AT 21,0; "INPUT VALUE ";F

100 INPUT V
110 IF V=-l THEN GOTO 190
120 PRINT AT F,0 > V
130 PRINT AT F, 5;
140 LET V=V*SCALE
150 FOR T=1 TO INT (V+. 5)
160 PRINT "*";
170 NEXT T
180 NEXT F
190 PRINT AT 21,0;"

162 163

The identification of scale factors to produce the best plot possible

within the available X,Y values on the screen is vital in all plotting

routines. The plotted functions have to be plotted on the biggest scale

that will enable them to fit the screen. This program fits the screen

without any problem:

ZX81

10 FOR X = 0 TO 60

20 PLOT X,SQRX

30 NEXT X

Spectrum owners should bear in mind that each pixel you can PLOT

on the Spectrum is a quarter as wide and a quarter as high as those on

the ZX81. Thus, as a general rule, you should allow for a factor of four

when working with ZX81 scales, as shown in this discussion of scaling

factors. In the program above, for example, the first line would read

FOR X = 0 TO 240.

The program above does not give the best illustration of the shape of

the curve, although it has the X,Y scales the same (one pixel = 1),

Changing line 20 to:

20 PLOT X, 2*SQRX

gives a better graph. It is obvious, in this instance, that we could

increase the scale factor - in this case the number by which we multiply

SQR X to get the Y value - to 5, and the graph would still fit the

screen.

But if we try this program (do!):

ZX81 Spectrum

10 FOR X = 0 TO 60 10 FOR X = 0 TO 240

20 PLOT X, X*X 20 PLOT X,X*X

30 NEXT X 30 NEXT X

we would only get a few points plotted before the computer stops with

an ‘integer out of range’ error code. It is obvious that the maximum

value in this case will be 60 x 60 = 3600 (ZX81) and 240 x 240 = 57600

on the Spectrum. So if we used:

20 PLOT X, X*X/100 20 PLOT X, X*X/400

the highest value for the Y pixel would be 36 on the ZX81, which

makes use of most of the screen. (For the Spectrum it would be 144.) In

most cases, however, it is not so easy to see what the scale factors

should be. We have a 44x64 screen to use on the ZX81 and a

256 x 176 screen on the Spectrum, and so in general, for positive values

only, suitable scale factors are given by:

ZX81 Spectrum

(X axis) __63_ 255

Largest value of X Largest value of X

(Y axis) _43_ 175_

Largest value for Y Largest value for Y

164

For a full range plot of a function that takes positive and negative

values, for example SIN, we have to set a scale factor which refers to

the screen available for use above and below the pixel Y value taken as

zero. To give an example, for a SIN function, taking values between

-t-1 and - 1 we set the zero line as Y = 20 (ZX81) or Y = 80

(Spectrum). We then need to find a scale value such that the Y values

vary between 20 above and 20 below this line (80 above and below for

Spectrum) as SIN varies between + 1 and - 1. Again, it is obvious that

we need to use a line like:

ZX81 Spectrum

20 PLOT X, 20 + 20*SIN X 20 PLOT X, 80 + 80*SIN X

To get a single full range curve we need X to vary from 0 to 2PI

radians, so we can use:

10 FOR X = 0 TO 2*PI STEP 2*PI/60

20 PLOT X, 20 + 20* SIN X [80 + 80 * SIN X on Spectrum]

30 NEXT X

for full screen use. (Remember 2PI radius = 360°.)

Up to now, although you have been told about the co-ordinates of

the PRINT and PLOT screens, we have treated the use of PRINT and

PLOT as two separate areas.

Since the PRINT and PLOT co-ordinate systems refer to the same

screen, the two may also be used in concert, but care must be taken.

Confusion is likely to arise between the numbering systems, not so

much in the numbering across the screen, but in the Y plane, where

pixels count 0-43 (0-175 on the Spectrum) upwards, and the print lines

0-21 downwards. Pixels are coded X,Y, across and up, print positions

L,C, down and across, The screen grids for printing and plotting are

reproduced here for both the ZX81 and Spectrum.

165

50
52

54
56

58

You cannot PRINT or PLOT
on the bottom two lines. Lines

OCOCDvJCnailsWNJ-* o CO ffl M O) U) £* 0> M —* o

B r e B fl fl E ■ B fl r B B r r r r r:

o
lu

m
n
s
-

►
0

1
2

3
4

5
6

7

B ■ B ■ fl ■ ■ ■ B a a B
B ■ fl B ■ ■ ■ ■ fl a B
IB E B fl fl ■ B fl ■ B ■ B fl
IB B B B fl fl B r □ ■ I B
IB r B B ■ B B ■ ■ ■ ■ B B
IB B B B B ■ ■ fl B B ■ fl B
IB ■ B B B B

o>
— —

00

to

o

to

to

£
oi

0)

**J

00

to

N>
O

NJ

K> M

8
£
N) f (_n ;

M *
O) T
N> j <
£ ^

00

20
24

NJ O)

CO

8

»

8

36

8

§

42
44

£ ■
£

— — s
s

Jff

$

-

PHI*.
□ 29

3
0

31

s
s r

62

1.. i"'“"
1

° * s s ; : ; 8 s s 8 s g g j; s s u
- “ " * • 2 6

Pixel y-coordinates

A
n ex

am
p

le: th
is is

th
e
 p

ix
el (5

7
,3

2
)

P
ixel x co

o
rd

in
ates

You cannot normally PRINT or PLOT

X
on th

o

e bottom two lines

(O QD vj tTl Ol ^ (J ■ 1 o

s B B B B B fl B fl fl B •

m B B B B B B fl B fl fl -

B ■ B fl B B B fl B B B B M

m fl fl fl B B fl B fl B B B «

m B B fl B B fl fl B E •• A* •

m B B B B fl B B B uv

m B B B fl B o>

M B B B B B fl B B B B -

2* 00

fl to

m o

A -

m K>

m U>

B
fl £

0>

fl
B B B B B £

fl B B B B B B B B B B
£

£ Q
fl ■ B fl B B B B B fl B fl B B B B B fl B B O

fl a

fl M

fl B B B B B V
a

fl ro

S£

JO

jgi
ttSES

o>

fl

fl
00

fl £

fl g

fl B B *3

0

7

8

15

16

23

24

31

32

39

40

47

48

55

56

63

64

71

72

79

80

87

88

95

96

103

104

111

112

119

120

127

128

135

136

143

144

151

152

159

160

167

168

175

Pixel y coordinates - ►

167

A
n ex

am
p

le: th
is is

C
o
l
u
m

n
s
-
►

rth
e
 pixel (1

9
1

,1
5

9
)

It is useful, when both PRINTing and PLOTting on the screen, to

work with one screen grid first, and then add the other grid. As an

example, consider graph titles. We could, to get a title for a printout of

a graph, use a direct command: PRINT “GRAPH OF

Y = X**2/100”, then use COPY, BREAK the COPY routine after the

first lines printed, then PLOT the graph with our program and COPY

that, but it’s not very elegant. We want the title on the screen with the

plotted graph. We can first set the PLOT routine, for example:

ZX81 Spectrum

10 FOR N = 0 TO 60 10 FOR N = 0 TO 250
20 PLOT N, N*N/100 20 PLOT N, N*N/400
30 NEXT N 30 NEXT N

By inspection, after RUNning the routine, we can add a title where it

will not interfere with the PLOT.

40 PRINT AT 0, 3; “2"

50 PRINT AT 1,0; “Y = X/100

This gives us a screen with everything on it, with the bonus of using

standard notation for X2, not the BASIC's ** (f on Spectrum)

notation. A different function might require the PRINTed strings to be
placed elsewhere.

Exercise

Write a program that will calculate the pixel co-ordinates of any

PRINT square (character cell). Input L and C (for Line and Column),

with suitable prompts erased by an empty string, and output

“Pixel”;X;“,M;Y;"is toP right", etc. For the ZX81, output the four
pixels in any specified character cell. For the Spectrum, output the

X,Y co-ordinates of the four corner pixels.

168

SECTION N: SUBROUTINES

Nls Subroutines

A subroutine in BASIC is a program module performing an allotted

task and is entered using a GOSUB statement. The section of program

is completed and exited by a RETURN statement which sends the

computer back to the line following the GOSUB statement. A

subroutine must only be entered via a GOSUB statement and exited by

a RETURN statement.

Two instructions are used to create subroutines.

GOSUB (line number) - transfers control to the specified line

number

RETURN - leaves subroutine and returns

control to the line immediately after

the GOSUB instruction which

transferred control to the subroutine.

Spectrum users have probably noted that their machine prints GO

SUB with a space.

Here is an example of the program structure for these instructions:

(1) GOSUB - goes immediately to line indicated (500)

(2) Continues program (lines 500-540) until RETURN reached

(3) Program returns to line 120 (line immediately after GOSUB

statement).

(4) It is vital to ensure that a subroutine is not entered accidentally

when writing the program. Note that line 140 does this by using

a GOTO statement to bypass the subroutine. Line 600 may

continue the program, or be a statement such as REM*END

OF PROGRAM*. It is a useful practice to end a program at the

highest line number, which indicates successful completion of

the whole program. The alternative, stopping the program with

a line 140 STOP, could also be used.

169

Subroutines are often used for repeated procedures and may be

thought of as separate program structures:

MAIN ROUTINE SUBROUTINE
100

110 GOSUB 500— > 500 REM * SUBROUTINE *
120 510

130 520
140 GOSUB 500- 530 REM * END OF SUBROUTINE *
150 .-

160
540 RETURN

The computer stores the line number of the GOSUB instruction

(whereas it doesn’t with a GOTO). The RETURN instruction

transfers control back to the line number after the latest GOSUB. As

shown above, this means we can enter a subroutine repeatedly in the
course of a program.

N2: Subroutine Example

The example program given below evaluates the circumference and

area of a circle, and has a subroutine to round the results to two

decimal places. The program works as follows:

(i) Calculates the circumference (line 40), and makes this figure

equal to variable Z (line 45), which is the variable the subroutine
will round.

(ii) Enters subroutine (line 50).

(iii) Corrects answer to 2 significant figures (subroutine lines

200 - 230), and returns with rounded value of Z to line 60,
which:

(iv) Prints out circumference (line 60).

The same procedure is then repeated for the area, the subroutine being

entered {called) again in line 90. Lines 200 to 230 of the program are

then executed again, but the RETURN statement this time returns

control to line 100 (the next line after the last GOSUB statement).

It is essential to have line 110, which prevents the subroutine being

entered accidentally when the calculation is complete.

10 REM "CIRCLE"
20 PRINT "TYPE RADIUS"
30 INPUT R
40 LET C=2*PI*R
45 LET Z=C
50 GOSUB 200
60 PRINT "CIRCUMFERENCE IS ";Z
70 LET A=PI*R**2 [f Spectrum]
80 LET Z=A
90 GOSUB 200

170

100 PRINT "AREA IS ";Z
110 GOTO 300
120 REM *MUST NOT ENTER A SUBROUTINE

EXCEPT BY A GOSUB*
200 REM * ^SUBROUTINE TO CORRECT TO

TWO DECIMAL PLACES**
210 LET Z=INT (100*(Z+.005))
220 LET Z =Z/100
230 RETURN
240 * *END OF SUBROUTINE**
300 REM * *END OF PROGRAM**

The second example is a program to evaluate the sum of the series

1 + 1/2! +1/3! +.. +1/10! to 6 decimal places. (The exclamation

mark (!) means * factorial’. Factorial 5 (5!) is5x4x3x2xl, etc.).

In this program there are two separate subroutines. The subroutines

are both entered repeatedly. The first is to evaluate the factorial and

the second corrects the answer to 6 decimal places. Although it is not

essential to use subroutines in such a program it does improve the

structure and make it considerably easier to follow the sequence of

operations.

10 REM "FACTORS"

40 LET S=0
50 FOR Z=1 TO 10
60 GOSUB 200
70 LET T=l/X
90 LET S=S+T

100 PRINT Z;" TH TERM IS ";T
110 NEXT Z
120 GOSUB 300
130 PRINT
140 PRINT "SUM OF SERIES ";V
150 GOTO 400
200 REM **SUBROUTINE FACTORIAL**
210 LET X=1
220 FOR N=1 TO Z
230 LET X=X*N
240 NEXr N
250 RETURN
300 REM ^SUBROUTINE 6 D.P. **
310 LET V=INT (1E6*(S+5E-7))
320 LET V=V*1E”6
330 RETURN
400 REM **END**

Results on screen:

1 TH TERM IS 1
2 TH TERM IS 0.5
3 TH TERM IS 0.16666667
4 TH TERM IS .041666666
5 TH TERM IS .0083333333
6 TH TERM IS .0013888889
7 TH TERM IS .0001964127
8 TH TERM IS .000024801587
9 TH TERM IS 2.7557319E-6

10 TH TERM IS 2.7557319E-7
SUM OF SERIES 1.7182862

171

Trace the program through for the first two terms to ensure that you

can follow the flow.

N3: Nested Subroutines

This technique is similar to nested loops in that a subroutine is entered

from another subroutine.

In the simple example given the program enters the first subroutine

(line 300) and from within this calls up the second subroutine (line 320

calls up subroutine at line 400) which is completed and returns (line

420) to the first subroutine which is then completed. See the diagram

below of the program flow.

Hand trace this program to discover the result of running it. (N.B.

This program is only used to illustrate nested subroutines and the

calculation carried out clearly can be done more easily without their

use.)

10 REM "SUBROUTINE!"
20 LET M==5
30 GOSUB 300
40 PRINT M
50 GOTO 500

300 REM ****1ST SUBROUTINE****
310 LET M=M+1
320 GOSUB 400
330 REM * *RETURN TO MAIN PROGRAM**
340 RETURN
350 REM **********************

400 REM ****2ND SUBROUTINE****
410 LET M =M* (M+l) **2 [f Spectrum]
420 RETURN
430 REM ***********************

500 PRINT "END OF PROGRAM”

The diagram illustrates the procedure in the above program for two

nested subroutines.

430
500

172

(1) Subroutine 1 is called at line 30.

Enter first subroutine at line 300.

(2) Start executing first subroutine.

(3) Subroutine 2 is called at line 320.

Enter second subroutine at line 400.

(4) Execute second subroutine.

(5) RETURN at line 420 returns program to line 330 (line

following GOSUB call).

(6) Continue execution of first subroutine.

(7) RETURN at line 340 returns program to line 40 (line following

GOSUB call).

(8) Statement to avoid entering subroutines accidentally.

The second example is typical of a computer games program. The

nested subroutine ensures that the computer’s move is printed out each

time before the player makes his move.

10 REM "NESTSUB"
20 REM **PART OF GAMES PROG**
30 LET X=3
40 GOSUB 600
45 PRINT
50 PRINT "YOUR MOVE WAS ";M
60 PRINT "COMPUTERS MOVE ”;X
70 STOP

600 REM **SUBROUTINE PLAYER**
610 GOSUB 700
620 PRINT "YOUR MOVE?"
630 INPUT M
640 RETURN
700 REM **SUBROUTINE COMPUTER**
710 PRINT "COMPUTERS MOVE "?X
720 RETURN

Note that it would make no difference if the nested (called from a

subroutine) subroutine were to start at a lower line number than the

subroutine which called it. Subroutines are always discrete program

modules, wherever they are located in a program.

N4: Recursive Subroutines

A recursive subroutine is a subroutine that calls itself. This facility is

not available in some versions of BASIC used on other computers. For

some purposes this can be a very useful program structure. From

within a subroutine, a GOSUB instruction is used to transfer control so

that the program re-enters the subroutine. The computer stores each

GOSUB call, with the line number to RETURN to, just as if the

GOSUB call had been made to a different subroutine. The RETURN

instructions are executed in reverse sequence to the order in which the

GOSUB instructions were encountered.

The example program below evaluates the factorial of any number

N, input as an integer less than 30. First the program, then the

explanation:

173

10 REM "RECSUB"
20 PRINT “TYPE NUMBER<30M
30 INPUT N
40 IF N>30 THEN GOTO 200
50 GOSUB 100
60 PRINT F
70 GOTO 210

SO REM
90 REM ########*###*#**#*

100 REM **#*8UBR0UTINE****
110 IF N <> 1 THEN GOTO 140
120 LET F=1
130 GOTO 180

140 LET N=N~1
150 GOSUB 100
160 LET F=F#<N+1)
170 LET N=N+1
180 RETURN

185 REM *#*#END8UB*#
190 REM
200 PRINT "OBEY INSTRUCTIONS, PR

ESS RUN AND NEWLINE/ENTER"
210 REM **END**

To help us decipher the program flow, we can insert PRINT

statements and add a counter, in order to code the GOSUB and

RETURN instructions with a number to indicate the sequence in

which the recursive calls are performed. Add the following lines to the

program:

5 LET C = 0 (sets counter to count

GOSUB calls)

35 PRINT N (prints first value of N)

45 LET C - C + 1 (first GOSUB call from main

program)

55 PRINT “RETURN TO MAIN

PROGRAM” (final RETURN executed)

145 LET 0 = 0 + 1 (increments counter each

time GOSUB is used

recursively)

146 PRINT “GOSUB CALL ”;C (prints each time GOSUB is

used recursively)

147 PRINT “N = ”;N (value of N before each

recursive GOSUB call)

155 PRINT “RETURN CALL ”;C (prints each RETURN call as

made, corresponding to the

GOSUB call of the same

number)

156 LET C - C - 1 (decrements counter as each

RETURN is executed)

165 PRINT “F « ”;F (value of F at each stage)

175 PRINT “N = ”;N (value of N at each stage)

Then run the program for N = 3. The resulting ‘machine trace’ screen

display is:
174

3
GOSUB GALL 2

N = 2
GOSUB CALL 3

N-l
RETURN CALL 3

F =? 2

N = 2
RETURN CALL 2

F = 6

N = 3

RETURN TO MAIN PROGRAM

6

If we draw up a trace using the data from this display (as below), we

will see that the GOSUB at line 150 is executed for each value of N from

1 to N. The RETURN calls are then made for each value from 1 to N,

calculating F each time (line 160) and incrementing N (line 170), so

that the value of factorial N is calculated as 1x2x3...xN. The

flowchart of this program is quite simple, but the algorithm is not clear

unless the sequence of GOSUB and RETURN calls is understood.

The computer stores each GOSUB call in sequence in a portion of

memory called the GOSUB stack, and each RETURN instruction

removes one of these stored GOSUBs, passing control to the line after

the GOSUB call. Confusion is possible with recursive subroutines

because the RETURNs are made to the same program line each time

(line 160 in this case).

175

Flowchart - “RECSUB”

176

Notice that line 130 passes control to the RETURN statement of line

180. Check for yourself that line 130 could be a RETURN instruction

and the program would still run correctly. This is likely to result in a

less visible flow in the program, however.

The next program has a subroutine (starting at line 100) which calls

itself in line 150. As for the previous program, insert suitable PRINT

statements to print out the values of the variables and the number of

GOSUB calls made. Hand trace the program for suitable integers, e.g.

15 and 25. The program evaluates the highest common factor of the

two numbers input. Note that in this case there are no processing

statements between the GOSUB call in line 150 and the RETURN

instruction of line 160. The sequence of RETURNS will be executed

by control going repeatedly to line 160 (the line after the GOSUB call),

which does the next RETURN, until the last stored GOSUB is

encountered, which will pass control back to line 50 of the main

program.

5 REM "HCF"

10 PRINT “TYPE TWO POSITIVE INTEGERS”
20 INPUT M
30 INPUT N
40 GOSUB 100
50 PRINT ”ANSWER IS”;P
60 GOTO 220

100 REM **SUBROUTINE**
110 LET P=N

120 LET N=M-N*INT (M/N)
130 LET M=P
140 IF N-0 THEN GOTO 160
150 GOSUB 100
160 RETURN
200 REM **ENDSUB**
210 REM
220 REM **END**

N5: Computed Gosubs

The line number N in a GOSUB N program instruction may be a

computed expression: it is permissible to have any expression as the

numeric value for a line number.

We can make use of this in programs where we want to give the user

some options of operations. Since we would write the program with

these options as subroutines, a suitable choice of line numbers can

allow us to present a menu to the user. Here are two (useless) examples

to illustrate the principle:

1) 10 PRINT ”MAIN PROGRAM”
20 PRINT "INPUT 1 OR 2”
30 INPUT X
40 GOSUB X*100
50 PRINT "MAIN PROGRAM ENDS"
60 PRINT "NOW BACK TO MENU"
70 PRINT
80 GOTO 10

177

100 PRINT "FIRST SUBROUTINE"
110 RETURN
200 PRINT " SECOND SUBROUTINE"
210 RETURN

2) 10 REM ^NESTED SUBS FOR MENU**
20 REM * * IN ITIALIS E MENU GOSUB**
30 LET MENU=1000
40 REM * *MAIN PROGRAM**
50 PRINT "MAIN PROGRAM"
60 REM
70 PRINT "NOW TO MENU"
80 PRINT
90 GOSUB MENU

100 PRINT "MORE MAIN PROGRAM"
110 PRINT "MENU OR END PROGRAM?’®
120 PRINT "INPUT M OR E"
130 INPUT N$
140 IF N$ ="M" THEN GOSUB MENU
150 GOTO 9999

1000 PRINT TAB 3;"MENU"
1010 PRINT ,,"1. OPTION 1", , "2•
OPTION 2"
1020 PRINT "INPUT 1 OR 2"
1030 INPUT M
1040 GOSUB (M*1000)+100
1050 RETURN
1100 REM ****SUB 1******
1110 REM ***************
1120 PRINT "SUB 1 COMPLETED"
1130 PRINT
1140 RETURN
2100 REM * ** *S UB 2*** * * *
2110 REM ***************
2120 PRINT "SUB 2 COMPLETED"
2130 PRINT
2140 RETURN
9999 STOP

Notice the use of a variable (“MENU”) to hold the line number

(1000) of the Menu subroutine (Lines 20 and 30). This technique can

be useful as a mnemonic in longer programs, and can help the user

identify which program module has been called.

This technique can be combined with the use of INKEY$ to give an

instantaneous jump to the required subroutine. The program waits for

a key to be pressed and then jumps to the required subroutine.

10 PRINT "PRESS 1 FOR SUB 1","
PRESS 2 FOR SUB 2"

20 IF INKEY$="" THEN GOTO 20
30 LET A$=INKEY$
3 5 IF A$ = "1" OR A $ ="2" THEN GO

TO 60
40 PRINT "KEYS 1 OR 2 ONLY PLE

ASE"
50 GOTO 10
60 GOSUB VAL A$*100
70 PRINT "BACK TO MENU"
80 GOTO 10

100 PRINT ****************

110 PRINT "SUBROUTINE ONE"
120 PRINT ****************

130 RETURN
200 PRINT "**************»
210 PRINT "SUBROUTINE TWO"
220 PRINT "**************»
230 RETURN

Spectrum users should replace line 20 with

20 PAUSE 0

N6: Subroutine Use: Example

As an example of the use of subroutines, here is a guess-the-number

game. The program has three subroutines, one to get the number (lines

150 - 190), one to check the guess (lines 210 - 300), and one for the

success message (lines 350 - 410), which sets the marker MARK to tell

the main program, which is the loop between lines 50 and 140,

whether the number N (computer's number) is the same as G (the

player's guess). This defines whether the success subroutine has been

called as a result of the conditional test in line 110.

3 REM "GUESSNUM"
10 LET MARK=0
20 LET TRIES-0
30 PRINT "GUESS MY NUMBER, "m

"NUMBER IS BETWEEN 1 AMD 99"
35 REM ** GET NUMBER **
40 GOSUB 150
50 LEn" TRIES-TRIES+l
60 PRINT i»"ENTER YOUR GUESS"
70 INPUT G
SO CLS
85 REM ** GOSUB CHECK **
90 GOSUB 200

100 REM ** GOSUB SUCCESS **
110 IF DIFF-0 THEN GOSUB 350
120 REM *c* CHECK MARK **
130 IF MARK=1 THEN GOTO 500
135 REM *# LOOP BACK **
140 GOTO 50

150 REM **********************
160 REM ** GET NUMBER SUB *•*
165 REM **********************
170 LET N= INT < RND *99)+1
180 RETURN

190 REM ** ENDSUB **
195 REM **********************
200 REM
205 REM **********************
210 REM ** CHECK SUB **
220 REM **********************
230 LET DIFF= ABS (G~N)
240 IF DIFF>50 THEN PRINT ? r"FR

EEZING"

178 179

250 IF DIFF>25 AND DIFF <= 50 T
HEN PRINT ? ? “COLD11
260 IF DIFFMO AND DIFF <~ 25 T

HEN PRINT i»"*WARM*"
270 IF DIFF>4 AND DIFF <~ 10 TH

EN PRINT »i" ** HOT ** "
280 IF DIFF>0 AND DIFF <= 4 THE

N PRINT n" ** *BOILING* *•# M
290 RETURN

300 REM END GHECKSUB **
310 REM ##*#*#*Ht*###*####**#**
320 REM
340 REM *###*#**##**#*■»#**#***
350 REM ** SUCCESS SUB ##
360 REM *#«**^#*#***#*****##**
370 PRINT AT 5?5?"$$$$$*$$$$$"?
TAB 5f"$ SUCCESS $”j TAB

$$$$$$$$"
380 PRINT AT 10»5?"IT TOOK "?TR

IES? H TRIES."
390 LET MARK-1
400 RETURN

410 REM ** END SUCCESS SUB **
420 REM ***4*#**^#*#^4fW4#****
430 REM
480 REM
490 REM ** END/RERUN MOD **
495 REM *****##^:tt***'****#*****
500 PRINT i ?"ANOTHER GO? INPUT

Y OR N"
510 INPUT M

520 CLS
530 IF A$="Y" THEN GOTO 40
540 PRINT i i 11 OKi BYE11
550 STOP

560 REM ■X"X* ENEi #■•#■ ■xx-

The structure of the program is thus:

Module 1:

1. Initialise success marker MARK and variable to store number

of guesses made (TRIES)

2. Print Instructions

3. Call GET NUMBER Subroutine

Module 2 (Main program loop):

1. Increment TRIES

2. Input guess

3. Call CHECK Subroutine

4. Check if Guess equals Number. If it is, then call SUCCESS

Subroutine

5. Check marker. If Success subroutine has been called

(MARK - 1), then GOTO END/RERUN module

6. Loop back to Input guess again (1)

Module 3 (GET NUMBER Subroutine):

1. Define random number 1 - 99 as number N

2. Return

Module 4 (CHECK Subroutine):

1. Set variable DIFF equal to ABS difference of guess and number

2. Check value of DIFF, print appropriate message

3. Return

Module 5 (SUCCESS Subroutine):

1. Print success message, number of guesses made

2. Set MARK equal to 1

3. Return

Module 6 (END/RERUN module):

1. Print prompt for input

2. Input response to Another go? (A$)

3. If replay required (A$ = “Y”) then GOTO Module 1,3

4. If A$ not “Y” then print end message

5. Stop

Notice that (although this is a program that has been modularised

rather artificially to demonstrate the principles in a short program) the

program consists of an introductory section, then a main program loop

with both conditional and unconditional calls to subroutines, within a

short main program loop. This makes the structure of the program

clear, and minimises the use of GOTO statements, which would be

required in profusion if the program were written in a linear, rather

than modular fashion. It is perfectly possible to write the program in

this linear manner, but the structure will not be as visible.

You should also note that the END/RERUN module is not a

subroutine, but uses GOTO to pass control to this section from the

main program, with a conditional GOTO to pass control back to the

main program if required. Conditional GOTOs are preferable

program structures to unconditional GOTOs, and whilst the END

module could be a subroutine, RETURNing to the main program

loop, further conditions would need to be inserted to pass control to

Module 1 for a new number to be defined. The subroutine would also

need to be exited by a GOTO for the program to stop. There is another

solution, however, involving a nested subroutine, which we will set as

an exercise.

Exercises

1 Rewrite “GUESSNUM” with the END/RERUN module as a

subroutine. The procedure should be as follows:

END/RERUN SUB

i. Prompt for player input, and get response, as before.

180 181

ii. If RERUN not required, bypass 3 and 4 below, by a GOTO

the RETURN line.

iii. GOSUB to GETNUMBER subroutine. This is a nested

subroutine. The new value of N will be set by this operation.

iv. Reinitialise TRIES as 0 and MARK as 0.

v. Return.

The main program loop is then returned to. The main program

must then test whether it is to exit (rerun not required) or

continue (new game started). We could set another marker to

test this, but in effect we have done this by re-setting MARK if a

rerun is required.

Rewrite the main program loop, so that on return from the

END/RERUN subroutine, the program loops back only if

MARK « 0. If MARK = 1 then the program will not loop back

and you can either insert a GOTO to bypass all the subroutines

to an end program procedure, or STOP the program before the

subroutines.

2 Insert an additional subroutine which prints 1;“ST”,2;

“ND”,3;“RD”, and then “TH” for other numbers into the

“FACTORS” program (Unit N2).

3 Write a program which determines how many rolls of a die are

required to produce a total score greater than 100. Use

subroutines to produce the random numbers for the die rolls and

to print out the results.

4 Let the computer choose a four digit number with no two digits

alike. You try to guess the number chosen. The computer

indicates H (too high), L (too low) or R (right) for each digit in

turn and {determines how many guesses are required to get the

correct number. Use subroutines to create the number, input

the operator’s guess and give the response to each guess.

182

PART THREE

ADVANCED BASIC PROGRAMMING

SECTION O: PROGRAMMING METHODS II

Ol: Resume

Before we enter the arena of advanced BASIC programming let us

recap on what we have examined and accomplished so far.

The method to design the solution or algorithm to a computational

problem using ‘top down’ analysis has been explained. We have seen

how to break our problem up into sub-problems which form our

program modules (using tree diagrams). We know how to describe the

algorithm in concise English sentences that we call pseudocode and

how to determine and illustrate the flow of control in the problem

solution by drawing a flowchart. When designing our solution we

recognise the need to use the fundamental programming tools of:

(i) decision making

(ii) branching as a result of decisions

(iii) direct transfer from one point in the algorithm to another

(iv) repetition

These control structures, as they are called, which are present in all

computer languages, have been discussed in some depth, together with

other important BASIC language fundamentals. The techniques of:

(i) decision making

(ii) numeric processing

(iii) character handling with strings

(iv) looping through counting and condition testing

(v) handling of output by printing and plotting

and the realisation of modular techniques in programming by using

subroutines have all been covered.

WHAT’S NEXT?

We must now consider the second phase of the programming

method - producing the program itself.

It is important to do so at this stage in the book, so that our

programming tool kit is complete enough to investigate and use the

more sophisticated information handling facilities to be introduced

later in this section:

(i) logical operations on data

(ii) character codes

(iii) moving graphics

(iv) graph plotting

(v) constructing and searching lists and data arrays

(vi) how to sort information into order

Once these skills have been mastered our complete programming

expertise can then be applied to real applications.

Let’s now see in this section of the text how to code our algorithms

into BASIC language programs, and then debug, test and document

them.

185

Further important design rules will be given, and finally a summary

of our complete programming method will be provided with a

flowchart and worked example.

02: Producing the Program

We now consider the method by which a well designed, tested and fully

documented program is produced.

Given our algorithm - which we have written out in steps in a

description we call pseudocode - together with our flowchart - which

shows how the steps of the solution are combined in sequence for the

computer to solve the problem - we must now:

1. CODE THE ALGORITHM IN SINCLAIR BASIC

2. DEBUG AND TEST THE PROGRAM

3. DOCUMENT THE PROGRAM

03: Coding and Design

CODE ON A ONE TO ONE BASIS

If the description of the algorithm is correct then coding on an almost

one to one basis from statements in the pseudocode or the flowchart is

possible. If you cannot code from the flowchart or pseudocode then

further refinement of the algorithm is necessary.

Pseudocode descriptions in formal mode of the BASIC language

control structures for decisions and loops are given later in this section.

You will notice that the description itself is indented and concise, with

the terms almost the same as BASIC statements. This is not unusual as

BASIC was designed to do this very thing and is English-like in its
syntax.

To be able to code at all you must of course:

KNOW THE BASIC LANGUAGE AND ITS RULES

Hopefully it is the right language for the job. On the ZX81 and

Spectrum you don’t have much choice! Actually it is a question of ease

of programming specific applications that generates different

languages. Most things can be done in BASIC, although perhaps not

efficiently or elegantly. It is often useful to identify the kind of

processing that will be required. When designing the algorithm

consider whether the problem is a scientific or a business application,

whether extensive calculations will be performed or large amounts of

list processing done, whether the data is extensively numeric or string

and whether the program will be interactive with much user dialogue.

When coding, avoid spelling and formatting mistakes. Sinclair

BASIC is powerful in that it is one of the few available single keystroke

BASICs, hence you cannot make spelling mistakes on instructions or

commands because the whole instruction is keyed in at once. However,

mistakes can still be made when assigning variable names and in

PRINT and REM statements.

DEFINE AND CONTAIN EACH MODULE
WITH REM STATEMENTS

For example:

100 REM * SORT MODULE *

200 REM * THIS MODULE SORTS STRINGS *

500 REM * END SORT *

TERMINATE YOUR PROGRAM PROPERLY

You may have noticed that Sinclair BASIC does not need a special

end-of-program statement. We can, however, put one in using a REM

statement. For example:

500 REM * END OF PROGRAM *

The ZX81 and Spectrum do not process but only note REM

statements. When the above line runs, the program will finish

elegantly with a 0/500 message.

We can also stop a program with the STOP statement. Main

modules should finish like this with subroutines programmed at higher

line numbers terminated with a REM * END * statement. When

terminated with STOP a message 9/line number (a 9 Stop (Line

number): 1 statement on Spectrum) will be given.

5 REM * NAME OF PROG *

10 REM * MAIN MODULE *

20 GOSUB 500

30 STOP

40 REM * END MAIN *

500 REM * SUBROUTINE *

600 RETURN

700 REM * END SUBROUTINE

800 REM * END OF PROGRAM

We could also use a GOTO 800 at line 30 to terminate execution on

the last program line.

ALWAYS CODE ACCORDING TO THE LOGICAL ORDER

OF PROCESSING

This is usually ensured if you code from a flowchart, with your

186 187

flowchart structured into modules, i.e. flowchart groups for the

modules in the program.

Take care with the control structures and avoid unnecessary

branching, especially with GOTO instructions. Try to make your

programs both readable and efficient - but first make them readable\

USER FRIENDLY PROGRAMS

Design your programs with the user in mind - and that includes you!

Directions to users should be concise and as few as is necessary, both in

the program and in the user guide if your program is large enough to

merit one.

Where the user needs a number of instructions to operate the

program then these can be built into an optional ‘help’ module or

subroutine.

100 REM * USER INSTRUCTION *

110 REM * DIRECTS USER TO HELP SUBROUTINE *

120 PRINT “ FOR INSTRUCTIONS TYPE HELP

OTHERWISE TYPE C ”

130 INPUT A$

140 IF A$ = “HELP”THEN GOSUB 1000

150 REM * END USER INST *

1000 REM * HELP SUBROUTINE *

1200 RETURN

1210 REM * END HELP *

Users usually require to know:

- how to run the program

- what form of input data is required

- what output is produced

Your program should check on the range and type of input data. If the

input data is out of range or incorrect the program should not stop with

an error, but continue with a message to input correct data.

After you have designed a program to do a specific task it may be

worthwhile to change it to be as general as possible - i.e. do several

similar tasks. As you become more skilled and confident in

programming you will be able to generalise and write a subroutine that

enables users to select options from a menu. This is exactly similar to

the exercise you have seen in multiple decision structures. See the

“CASSFILE” program in Section V, for a “menu-driven” program.

More “user-friendly” tips are given in the section on documentation,

and some useful routines in Unit V2.

DESIGNING PROGRAM LAYOUT

You must make your program readable. The program design will be

modular and contain specific identifiable segments, subroutines and

modules. These should be labelled in the design of the algorithm and

transferred in the coding process.

(1) EACH MODULE SHOULD BE TITLED AND LABELLED

TO INDICATE ITS FUNCTION. FOR EXAMPLE:

10 REM “AVERAGE”

20 REM * PROGRAM AVERAGES ANY NUMBERS

INPUT *

30 REM *

40 REM * USER ROUTINE *

50 REM * CHOICE OF NUMBERS INPUT *

60 PRINT “HOW MANY NUMBERS DO YOU WISH

TO AVERAGE”

70 INPUT N

80 DIM A(N)

90 REM * INPUT ROUTINE *

100 REM * NUMBERS INPUT TO ARRAY *

110 PRINT “INPUT NUMBERS”

120 FOR 1=1 TON

130 INPUT A(I)

140 NEXT I

150 REM

160 REM * PROCESSING ROUTINE *

170 REM * COMPUTES AVERAGE *

180 LET SUM = 0

190 FOR J = 1 TO N

200 LET SUM = SUM + A(J)

210 NEXT J

220 LET AVERAGE = SUM/N

230 REM

240 REM * OUTPUT ROUTINE *

250 PRINT “THE AVERAGE OF”

260 FOR K = 1 TO N

270 PRINT A(K);“ ”;

280 NEXT K

290 PRINT “IS ”; AVERAGE

300 REM

310 REM * END AVERAGE *

(2) DESIGN YOUR PROGRAM SO THAT RELATED

STATEMENTS ARE TOGETHER

For example, input - processing - output statements:

(i) All input statements will be at the beginning of a simple

sequential program, processing in the middle, and

output normally at the end.

188 189

(ii) For a modular program, input, processing and output
routines will be separate modules or groups of statements
within a single module,

(iii) Subroutine modules will usually be placed separately at
the end of a program.

(3) INSERT REM STATEMENTS BETWEEN PROGRAM
MODULES AS SEPARATORS
Program modules are then easily identified. Use blank REM

lines or lines of asterisks.

(4) PLAN YOUR PROGRAM LAYOUT BEFORE CODING
The printed listing of your program is important. Choose a
maximum line width. Break longer lines into shorter ones in
REM statements by using spaces. Compensate for overrun. For

example:
10 REM * AAAAA

AAAAA
AAAAA *

You will not be able to do this with Other BASIC statement lines.

(5) YOUR LAYOUT SHOULD TRY TO REFLECT THE
MODULAR STRUCTURE OF YOUR PROGRAM

190

Indented statements are not possible on the ZX81 or Spectrum,
unfortunately!

DESIGNING PROGRAM OUTPUT

For the user the output is the most important part of the program.
Take time planning it. The output instructions in Sinclair BASIC are:
PRINT, PRINT AT, PLOT, LPRINT, COPY, TAB, plus graphics
commands.

(i) RESULTS SHOULD BE OUTPUT WITH RELATED
TEXT.
Label all your numerical output:
e.g. I YEAR I 1974 I NET INCOME I £5678.65

instead of 1974 5678.65
e.g. AVERAGE AGE OF BOYS IS 15 YRS 3 MONTHS

rather than 15 3

(ii) DISPLAY LARGE AMOUNTS OF OUTPUT AS A TABLE,
HISTOGRAM OR GRAPH, AND GIVE TITLES.

For example:

TABLE 1: NET INCOME FOR B. JONES
FOR YEARS 1978-80

YEAR I NET INCOME
1978 £2018.45

Box your tables if possible.
The user should not have to look up the program listing to see

what the numbers in the output mean.
DESIGN YOUR OUTPUT TO BE EASY TO READ
Plan it to be attractive to any user of your program and, of
course, yourself. Graphics is a powerful tool for this.
ALIGN, SPACE AND JUSTIFY THE OUTPUT
Plan your output with reference to the screen size and divisions.
For tables - align information central to the heading

align signs
right justify numbers
left justify characters.

(There are routines in the text for doing this). For example:

STUDENT CODE

876-340
27-210

453-003
1-025

NAME

JIM SMITH
HUNG FO
SARAH JAY
DRACULA

191

NUMBERS

15.003

815.231

- 4.000

- 100.100
Fill in with zeros to get decimal placing correct.

(v) USE SPACE CAREFULLY

Sinclair computers use expensive printer paper! Print output

horizontally wherever possible. For example:

TABLE OF POWERS OF 2

2
4

8
16

32 etc

should be:

TABLE OF POWERS OF 2

2 4 8 16 32

64 128 256 512 1024

(vi) DO NOT OVERDO EXPLANATIONS

Be succinct!

(vii) MAKE YOUR ABBREVIATIONS CLEAR

x = 25

NDTC =25

NUMBER OF DAYS TO CHRISTMAS = 25

(viii) DISPLAY INPUT DATA AS AN OPTION

Allow checking of input data before processing.

Make your program check for incorrect or bad input data.

MODULAR DESIGN

We break problems down into sequences of steps to produce programs

in which different kinds of activities are separated out. These

distinctive program modules are our SUBROUTINES or SUB¬

PROGRAMS. Each module has its own name and address, but in

BASIC we usually refer to program modules by address only, as with:

GOTO 100 and GOSUB 3300

where the address is the line number of the first statement in the

module.

We can address sub-programs or modules by name by assigning the

name and address of the module at the start of the program. For

example:

10 REM * ASSIGN MODULE NAMES *

20 LET INPUT DATA = 1000

30 LET PROCESSING = 2000

40 LET OUTPUT DATA = 3000

50 REM * END MODULE ASSIGN *

60 REM

70 REM * MAIN *

80 GOTO INPUT DATA

90 GOSUB PROCESSING

100 GOTO OUTPUT DATA

110 STOP

1000 REM * INPUT DATA MOD *

1500 GOTO 90

1600 REM * END INPUT *

2000 REM * PROCESSING SUBROUTINE *

2500 RETURN

2600 REM * END PROCESSING *

3000 REM * OUTPUT DATA MOD *

3500 GOTO 110

3600 REM * END OUTPUT MOD *

4000 REM * END PROG.*

There are good reasons for modular design and the use of subroutines

and sub-program modules. The logic of the program, i.e. its flow, is

easier to follow. The clarity of the structure of the main program is

improved whilst program design is proceeding by referring to the

number or name of the module initially, instead of starting to write out

the code of the module at that point. The module can be coded as a

separate entity.

Independent testing of modules is possible, but care must be taken

that all variables have been declared and have their correct values at

the start of the module. Debugging is simpler with this approach, since

the module is isolated. You can leave the coding of a module until a

later stage, but you must know what it will do when coded.

If a module has to be used several times in a program from different

places it need only be written once and called (into action) from these

points by reference to its line number or name.

192
193

Program modules can be designed to run sequentially:

START

STOP

This structure is convenient for simple programs. However, programs

can be structured in terms of subroutines and sub-programs being

called from a short and simple main program module.

START

This structure is convenient for longer, more complicated, programs

with many modules and nestings.

Subroutines automatically return to the next line in the main program

through the RETURN statement. Other modules are called by GOTO

(line number) and return by GOTO (line number) instructions.

goto must be used with thought and care and

NOT EXCESSIVELY. Use a GOSUB unless a return to a different

point in the main module is needed or a multiple return is possible as a

result of a decision to be made within the module.

Nested modules can be treated as other modules and called from

within the subroutine or sub-program, by GOSUB and GOTO

instructions. Nested loops must be contained within the same module,

however.

CONTROL STRUCTURES IN SINCLAIR BASIC

(1) Each control structure is a program module.

(2) A formal pseudocode description of each structure is given of the

general form of the control structure.

(3) A flowchart description is given of the general form.

(4) The BASIC version is given of the general form.

(5) A simple example illustrates the BASIC form of the control

structure.

(6) Structures will be written in indented form in the pseudocode

version for clarity. You cannot indent in Sinclair BASIC

program listings. REM statements must be used to show the

start and stop lines for program modules.

(7) P is a processing operation. It can be a single instruction, a

statement or a group of statements.

(8) In the formal pseudocode each structure will commence with the

title module (abbreviated to mod), and end with the statement

endmodule (abbreviated to endmod).

(9) In BASIC each structure will be bounded by

REM*STARTMOD* and REM*ENDMOD* statements.

(10) Flowcharts will be bounded by START and STOP symbols.

The structures summarised are:

A) Decision Structures

(i) Single decision

IF-THEN structure

(ii) Double decision

IF-THEN-else structure

(iii) Multiple decision

Case structure

194 195

B) Loop Structures

(i) repeat-forever loop structure

(ii) repeat-until structure

(iii) while-do structure

(iv) FOR-NEXT structure
The names of the structures are implemented as actual

programming language structures in other languages and some

forms of BASIC. The FOR-NEXT structure is a special form of

the while-do loop, given a specific implementation in BASIC.

A. DECISION STRUCTURES

(i) SINGLE DECISION: The IF-THEN structure

Meaning: IF (condition is true) THEN (do something)

Pseudocode Flowchart

mod

if (condition)

then P

endif

endmod

BASIC

10 REM*START MOD*

20 IF (COND) THEN P

30 REM* ENDMOD*

Example

Input a number and if it is positive, print it.

Pseudocode BASIC

mod 10

input A 20

if A > 0 30

then print A 40

REM*START MOD*

INPUT A

IF A > 0 THEN PRINT A

REM*END MOD*

endif

endmod

(ii) DOUBLE DECISION: The IF-THEN-else structure

Meaning: IF (condition is true) THEN (do something)

otherwise (if condition is false) do something else.

Pseudocode Flowchart

mod

if (cond)

then PI

else P2

endif

endmod

BASIC

10 REM*START MOD*

20 IF (COND) THEN GOTO 50

30 (FALSE TASK P2)

40 GO TO 60

50 (TRUE TASK PI)

60 REM*ENDMOD*

To perform the true task (PI in the pseudocode) first, the BASIC

implementation of the structure would test the complement of

the condition, so that in the program below, for example, A>B

would be replaced by A<B, and lines 50 and 70 swapped. Note

the standard form of complement would be B< = A, but we have

defined the input numbers as unequal in this case.

196 197

Example

Input two unequal numbers and print the largest.

Pseudocode BASIC

mod 10 REM*STARTMOD*
input A,B 20 INPUT A

if A > B 30 INPUT B
then print A 40 IF A > B THEN GOTO 70

else print B 50 PRINT B
endif 60 GOTO 80

endmod 70 PRINT A

80 REM* ENDMOD*

(iii) MULTIPLE DECISION STRUCTURE: The case structure

With this structure we want the program to select and perform

one of several alternative tasks.

The conditions in this case structure are sequential, not

nested and mutually exclusive.

Pseudocode

mod

case

if (condition 1 is true)

then PI

if (condition 2 is true)

then P2

if (condition 3 is true)

then P3

end case

endmod

Flowchart

198

BASIC

10 REM * STARTMOD *

20 IF Cl THEN PI

30 IF C2 THEN P2

40 IF C3 THEN P3

50 REM* ENDMOD"

Example

Test whether a number input is positive, zero, or negative, and

print the result.

Pseudocode

mod

input A

case

if A<0

then print “NEGATIVE”

if A = 0

then print “ZERO”

if A>0

then print “POSITIVE”

endcase

endmod

Flowchart

199

BASIC

10 REM * STARTMOD *

20 INPUT A

30 IF A < 0 THEN PRINT “NEGATIVE”

40 IF A = 0 THEN PRINT “ZERO”

50 IF A > 0 THEN PRINT “POSITIVE”

60 REM*ENDMOD*

Alternatively, we can use conditional and unconditional GOTO

statements to implement this structure. This would be

appropriate if the processing section of a program after the

decision were several statements long, rather than the single

instruction available on the ZX81. Spectrum users can add more

instructions on the same line. They should be restrained in using
this facility.

10 REM* STARTMOD*

20 INPUT A

30 IF A < 0 THEN GOTO 60
40 IF A = 0 THEN GOTO 80
50 IF A > 0 THEN GOTO 100
60 PRINT “NEGATIVE”
70 GOTO 110

80 PRINT “ZERO”
90 GOTO 110

100 PRINT “POSITIVE”
110 REM* ENDMOD*

B. LOOP STRUCTURES

(i) The repeat - forever loop

Meaning: None. The only conceivable result is the program

halting with an arithmetic overflow report.

Pseudocode Flowchart

mod

repeat

P

forever

endmod

BASIC

10 REM* STARTMOD *

20 P

30 GOTO 20

40 REM*ENDMOD*

This structure is for demonstration only. Avoid using it in

programs! It can sometimes occur in error. Use BREAK if you

suspect your program has entered such a loop (because nothing

happens).

(ii) The repeat - until loop

Meaning: Repeat processing until a condition is true.

These structures loop until a specific termination condition is

met, for example until a counter reaches a certain value or until

a dummy or sentinel value is input. The important characteristic

of this loop structure is that the repeat test (or exit test) is at the

bottom of the loop, after the processing ‘body’. The program

lines making up the body of the loop (P) will be executed at least

once. The repeat condition can use any conditional operator or

its complement (reverse).

e.g. equals ^ ► not equal

<>
Use of the complement often leads to a more elegant program.

Pseudocode Flowchart

BASIC

10 REM* STARTMOD*

20 P

30 IF (COND) THEN GOTO 50

40 GOTO 20

50 REM*ENDMOD*

200 201

BASIC using complement

10 REM * STARTMOD *

20 P

30 IF (COMP COND) THEN GOTO 20

40 REM*ENDMOD*

Exit requires no specific instruction.

Example

Input and print strings until the sentinel value “LAST” is

input.

Pseudocode Flowchart

mod

repeat

input A$

print A$

until A$ - LAST

endmod

BASIC

10 REM * STARTMOD *

20 INPUT A$

30 PRINT A$

40 IF A$ - “LAST” THEN GOTO 60

50 GOTO 20

60 REM* ENDMOD*

202

Complement Version

10 REM*STARTMOD*

20 INPUT A$

30 PRINT A$

40 IF A$<>“LAST” THEN GOTO 20

50 REM *ENDMOD*

(iii) While - do structure

Meaning: While a condition holds (TRUE) keep repeating the

process until the condition is broken (FALSE).

The condition can be, for example, that a loop-counter

variable value is not equal to its final value (IF N<10 THEN..).

The process will then repeat until it is. The condition may also

be set so that a sentinel value has not occurred (IF N<>6

THEN). These conditions are set so that the true pathway is the

process task, and the false is the exit.

The While - do loop is characterised by having the repeat test

carried out prior to the body of the loop (i.e. at the top). No

processing will happen if the repeat test is false at the first

encounter, i.e. the body of the loop is never entered.

Pseudocode Flowchart

BASIC

10 REM * STARTMOD *

20 IF (COND) THEN GOTO 40

30 GOTO 60

40 P

50 GOTO 20

60 REM*ENDMOD*

203

Using the complement of the repeat condition gives a neater

program.

Complement Version

10 REM * ST ARTMOD *

20 IF (COND) THEN GOTO 50

30 P

40 GOTO 20

50 REM*ENDMOD*

Example

While the value of the square of consecutive integers is less than

100, print them on the screen.

Pseudocode BASIC (complement)

mod i0 REM * ST ARTMOD
n = 1 20 LET N = 1
while n*n< = 100 30 IF N*N>100 THEN

do print n*n GOTO 60
n = iu 1 40 PRINT N*N

45 LET N = N + 1
end while 50 GOTO 30

endmod 60 REM* ENDMOD*

(iv) FOR -NEXT Loops

FOR - NEXT loops are a special BASIC structure for repeating

a process a stated number of times. They are in fact While - do

loops and have the repeat test at the top of the loop.

Example

Print the values of the first ten integers.

Pseudocode BASIC

mod 10 REM* ST ARTMOD
n = 1 20 FOR N= 1 TO 10
While n < = 10 30 PRINT N

do print n 40 NEXT N
n = n + 1 50 REM*ENDMOD*

end while

endmod

FOR - NEXT loops have their own special flowchart symbol,

because they are used so extensively in BASIC:

204

Ordinary Special

NEXT structure.

04: Program Development

Program Development involves the activities of DEBUGGING your

program of errors, TESTING to see if it behaves as specified and gives

the desired results, and DOCUMENTATION which tells users how to

run the program.

DEBUGGING

The Sinclair machines have good editing facilities and error messages.

Those on the Spectrum have brief statements of the error type, those on

the ZX81 have just a number or letter.

Although it is inefficient to correct errors one at a time (because there

is seldom only a single error since programming mistakes tend to

compound one another), error messages on the machine are produced

singly, since an error stops the computer from running. Thus we must

deal with the errors as they occur in the program sequence. You may

notice a number of errors on carefully looking through the listing. Any

you spot should be edited out at once.

GET TO KNOW YOUR COMPUTER ERROR CODES

This will happen automatically in time (as you make mistakes!), but it

is worthwhile studying the codes. They define the ways in which ‘run¬

time’ errors occur, and an understanding of them will help you avoid

bugs.

205

Keep a note of mistakes you have made and how you

corrected them. This will be valuable for future reference.

This should become an automatic part of your personal

documentation. Keep a copy of old program listings. Record the errors

you have made, the corrections you tried but which did not work, and

what you learned in developing the program.

Trace the impact of any error through the program.

SYNTAX ERRORS

These are caused by BASIC statements you key in which do not obey

the precise language rules (syntax rules) of Sinclair BASIC. The syntax

errors are detected by the LINE INTERPRETER which

automatically checks each line you key in when you press the

NEWLINE (ENTER) key.

If there is an error the interpreter will place the SYNTAX ERROR

cursor just before the first error it detects on the line. This may be at

the end of the line if the interpreter finds that something else should

have been placed there. To correct this type of error you must compare

the syntax you have written with the rules of BASIC.

Typing instructions incorrectly cannot occur on the Sinclair

computers as the BASIC is single key-stroke. In other BASICs you

must type P,R,I,N,T, for PRINT. Instructions in general are

automatically placed in the correct order along a line (i.e. the order of

line number - instruction - operand), since they are taken care of by

the mode controller which sets the cursors in the correct sequence.

Errors which can occur are;

1 Omission of line number

2 Line number too large (>9999)

3 Line number negative

4 Line number non-integer

5 Omission of delimiters:

brackets (must be paired)

commas

semicolons

quotes

colons (on the Spectrum)

6 Typing in of improper variable names

7 Incorrect logical expressions

There can be more than one error per line. The S-cursor will re-appear

in the line when you try to enter it into memory. The line edit facility is

comprehensive and easy to use on the ZX81 and Spectrum.

You must correct your mistakes, and keep trying to ‘compile’ the

line into correct BASIC syntax (to be entered into memory). When

successful, the program line will appear at the top of the screen.

The syntax error check ensures no nonsense lines (from the

computer’s point of view) are entered. It cannot help you in coding

correct sequences of program lines, or prevent logical errors.

PROGRAM LOGIC ERRORS

These are the effect of bad logical design of the program. They can be

avoided if care is taken in the design and coding of the program. If a

program produces incorrect results then there is an error in the flow of

logic in the program. This may only occur with certain values of data.

If each program section or module has been tested independently

then the linking of the modules is incorrect. We can test program

sections as follows:

1) Insert a temporary breakpoint into the program, at the

appropriate point.

2) Print out values of intermediate results, to the screen or printer.

3) It is most important to print out the values of variables used in

making a decision and those used in loops, either counter loops

or FOR - NEXT loops.

4) Go back to the pseudocode or flowchart and modify the steps

which are in error. ‘Walk through’ the algorithm, using a

flowchart, to check the step sequence, and hand trace the

program with selected values of data and/or variables. Be

careful! Often changes in one part of the algorithm cause

changes in the others. It is no use solving one problem if it causes

another!

5) Change the documentation if necessary. Note down the changes

you have made, or lines you have deleted. Keep program

listings.

6) Re-test the complete program, using a variety of data.

Each testing statement in a complex program should be headed by a

remark statement.

1000 REM-DEBUG

(Testing Statements)

REM - END DEBUG

These temporary REM statements are later deleted by keying in their

line numbers, as are the testing statements. It is very easy to leave in

test instructions unless they are marked.

INSERTING BREAK POINTS

We can stop a program at any point and obtain the values of variables,

expressions, etc. to test calculations or check for errors. We do this by

206 207

inserting a group of statements which will output the values we want

and then stop the program.

ADD TEST OUTPUT OF VARIABLES

INSERT STOP STATEMENT

CONT will restart the program.

Individual modules or sections of program can be tested this way.

We do, of course, have to RUN the program from the required module

line number. Care should be taken when this is done that variables

needed in the module have been declared properly and that the values

of parameters passed to the module are as required. Remember that

you can INPUT the values of variables directly if necessary, using the

command mode, and using LET statements:

LET X(2) - 20, etc.

The value of any variable at the point the program crashed can also be

obtained by keying a statement without the line number, and again

using the computer in command mode:

PRINT A$

LPRINT X(3)

The commands RUN N (where N is the line number we wish to run

the program from) and GOTO N enable us to run the program starting

at any point. Using GOTO N does not negate the initialisation of

variables that occurs if the program has already run. For example, if

we input:

10 LET A = 1

20 LET B = 2

30 PRINT A,B

and then key in GOTO 30, we get the error report '2/30’ (ZX81) or '2

Variable not found 30 :T (Spectrum) meaning an undefined variable

was found. If we RUN the program, we can then use GOTO 30, and

the program signals successful completion.

RUN-TIME ERRORS

These are a result of programmer carelessness and do not prevent the

interpreter from translating the program. They make the program

crash when you attempt to run it, that is they prevent the program

from running to completion. Common run-time errors are:

1) undeclared or unidentified variables

2) arithmetic overflow

3) lack of data for processing

Module

4) failure to complete loop increment and subroutine section

statements

5) subscript out of range

6) memory full

7) screen display file full

8) integer out of range

As we have seen, run-time errors cause diagnostic system messages to

be printed. These appear at the bottom of the screen and are called:

ERROR CODES

These errors can then be traced through the type of error given by the

code and the line number at which the program stopped.

ERROR CODES

Error codes or Report codes are presented on the screen when a

program stops for any reason, either as a result of successful

completion (no more program lines), an instruction or command

(STOP, BREAK), or a run-time error.

On the ZX81 the codes have the form E/N, where E is the code for

the type of error and N is the line number where the program was

stopped (STOP or BREAK), or where an error occurred. N is 0 for a

direct command. This is an example of an error code on the ZX81

which is printed on the screen when an arithmetic overflow (number

larger than about 1038 generated) occurs in line 60 of the program:

6/60

The Spectrum gives an extended error report code, with a brief

statement in the form:

E Statement N:S

where E is the report code, the statement is the reason for stopping

(with BREAK or STOP or program completion) or type of error. N is

the line number, but since the Spectrum can have multiple line

statements, the S number indicates which statement on the line the

report code refers to. We are not using multiple line statements in this

text, so S will always be 1, meaning the first (and only) statement on

the line, unless after the THEN in an IF. . .THEN statement, which is

treated, like a colon, as a statement separator.

The Spectrum’s version of the example given above (the ZX8Ts

arithmetic overflow error code) is:

6 Number too big 60:1

Report codes are crucial aids to debugging programs. Without them

we would know only that we had an error, but not where it occurred or

what type of error it was. The error reports indicate both of these items

of information.

It is important to understand that the cause of an error may come

earlier in a program than the line where the program stopped. For

example, a code 2 error (variable not found), occurring in line 100 of a

program might be caused by a mis-spelt variable name in line 100 (not

208 209

the same as the variable you meant it to be - putting GUES when you

meant GUESS, for example). It could also be the result of not having

assigned the variable earlier in the program. If the error causing the

program to halt is not apparent from the line given in the error report,

the program flow must be traced backwards to find the prior cause. In

some cases this can be extremely difficult to track down - for example,

where a numeric value wrongly defined or generated by the program

causes another expression to cause an arithmetic overflow. Tracing

techniques must be used.

Lists of Error codes and their meanings for the ZX81 and Spectrum

are given in Appendix II.

TESTING AND VERIFICATION

Verify that your program works by testing it with Test Data

Testing comes after debugging a program. Its purpose is to ensure that

the program is logically correct, produces correct answers and meets

the specification of its purpose.

1 First test each module separately

Each procedure and subroutine should be treated as if it were a

separate program.

Test for (i) good data - the expected type and range of inputs.

(ii) bad data - out-of-range and incorrect type inputs.

Try to ensure each procedure Tails softly'. For bad data (particularly

in any data entry module) following each input a check routine or

procedure should be used to give an error message if range is incorrect

or check type of input and correct syntax. This is best done with

strings, which are more flexibly handled. See Unit V which deals with

input checks at length.

2 Combine the modules and test the complete program

If there is a logical error (i.e. program does not produce the intended

results) insert additional test statements which will:

(i) Output intermediate results.

(ii) Output values of variables at each stage.

(iii) Output results of expressions at each stage.

(iv) Output values of the loop counter at each pass.

(v) Output results of array manipulation after each

operation.

(vi) Output values of parameters before and after subroutines

entry and return.

3 Handle exceptions

(i) Test all data in the program.

(ii) Screen all data.

(iii) Process only good data.

(iv) Output bad data saying why it was bad.

4 Let your program stop elegantly

(i) When there is no data input or data available, the

program should tell you so.

(ii) Sinclair BASIC programs are interactive. The user can

control program continuation with:

910 PRINT "PROCESSING ENDED - MORE

DATA? ANSWER YES OR NO”

920 INPUT A$

930 IF A$ - "YES” THEN GOTO 100

940 PRINT "GOODBYE”

950 STOP

960 REM PROGRAM END

5 Rewrite the program until you are satisfied with it

Remember the program should be - structured

- easy to read

- easy to understand

- handle exceptions

- be as efficient as possible

- documented

and it must solve the problem as specified!

6 Put clarity before efficiency

To be good a program algorithm does not have to be clever, difficult to

understand or run super-fast. If you do not understand how the

algorithm works do not use it - rewrite and re-design or use another

method.

Programs will work correctly if the rules of the language are obeyed,

and the program will work to specification if the algorithm is properly

designed.

DOCUMENTATION

ANNOTATE AND DOCUMENT YOUR PROGRAM AND

CREATE A READABLE PROGRAM

1 Write an explanation for each program module or segment. At

the beginning of each segment provide suitable comments which

explain:

(1) the purpose of the algorithm

(2) the variables and their significance (the values they

store)

(3) the results expected.

2 Use comments only where necessary:

(1) don't comment each program line

(2) don't explain the obvious

(3) at the beginning of the program provide a block of

210 211

comments that explain the program at each module and

provide a comment which explains what the module does

in relation to the program.

3 Clear comments should appear separated from program code.

The clearest comments are framed. For example

10 REM ********

20 REM * SUBROUTINE TO

30 REM * CALCULATE N TO 2 D.P. *

40 REM * *

50 REM ********

Lines of asterisks provide visible dividers between sections of

program.

4 Use comment in the program and in the output to the screen or

printer.

Use blank REM lines as separators in the program,

5 For large programs write a reference document:

(i) Describe the algorithm you used. If it is not original you

should include a note of its source, author, version, and

type of computer it was written on.

(ii) Explain how you wrote the program, the reasons for

writing it, the type of computer used and memory

required.

(iii) Make a note of areas that may need improving, or could

be modified for different purposes.

(iv) Which modules are general (menus, subroutines), and

which require specific kinds of input.

(v) Explain the scope and limitations of the program.

(vi) Include your name, and the date of production.

6 List the tests you made and data used. Reproduce some of the

results of the tests.

7 List performance tests (e.g. how long it takes the program to

run).

8 Give user instructions and reproduce the output of a run and

explain to the user how he uses the program.

9 Give the program characteristics. Explain any abnormal

behaviour of the program (e.g. response to bad input).

10 Write a brief USER GUIDE. This is not for the computer

expert. It should explain:

- the purpose of the program

- the algorithm

- how to run the program

- what input is needed

- what results are printed

- how to use the menu (if included)

212

05: THE COMPLETE PROGRAMMING METHOD

SUMMARY: THE STRUCTURED PROGRAMMING METHOD

PRODUCE THE ALGORITHM

State the Problem fully

1.1.1 State the problem

1.1.2 Understand what is to be done

Research the Problem

1.2.1 Research and analyse the problem to see how the

computer can handle it

1.2.2 Identify all formulae and relations to be used.

1.2.3 Identify all data involved

Design the algorithm

Use top down structured methods:

1.3.1 Break the problem up into sub-problems or modules.

1.3.2 Use a structure diagram or tree diagram to help in

breaking down the problem.

1.3.3 Start classifying modules or parts of modules as:

INPUT

PROCESSING

OUTPUT

1.3.4 Utilise the fundamental control structures in the modules

- Decision structures

- Transfer structures

- Loops

- Subroutines

- Nested structures

- Subprograms

1.3.5 Set up a DATA TABLE in which all data types are

classified as

Variables

Constants

Counters

Functions - if using a Spectrum and the DEF FN

instructions

1.3.6 Define the algorithm further until coding it into a BASIC

language program is an easy and obvious exercise.

Describe the algorithm in Pseudocode and Flowchart form

1.4.1 Write out the final algorithm (now in modular form) in

small steps in an abbreviated English style called

Pseudocode.

Each module should be treated separately and labelled.

1.4.2 Illustrate the logical flow of control in the algorithm by

constructing a flowchart.

1.4.3 Test the algorithm, if necessary using a hand trace or

walk through.

213

2. I PRODUCE THE PROGRAM 1

2.1 Code the Algorithm in SINCLAIR BASIC

2.1.1 Code on a direct basis from the pseudocode or flowchart

description in line numbered BASIC statements, module

by module.

2.1.2 Implement the fundamental control structures, used in

their SINCLAIR BASIC versions.

2.2 Debug and Test the Program

2.2.1 Debug the Program. Check the program variables against

your algorithm test. Correct syntax, run time, and logical

2.2.2 Test the program for further logical errors. Run the

program with sample data.

2.3 Document the Program

For a full documentation, you should:

2.3.1 Produce a programmers} guide consisting of:

pseudocode

flowchart

variable table or data table

program listing

test results or sample printout.

2.3.2 Detail the steps that producing the program involved.

2.3.4 Write a user guide.

214

PROGRAMMING: SUMMARY OF METHOD IN FLOWCHART FORM

This provides a diagrammatic version of the summary of structured

programming:

215

216

AN example of structured design

1 Problem Statement

Write a program that computes and prints the Average or Mean

(M) and Standard Deviation (S) of a collection of N data items.

To compute S use the formula:

Standard Deviation

Find out what we have to do (research the problem)

We are given most of the information in the question but we are

missing some. It does not tell us how to compute the Mean or

Average. This is given by the formula:

Mean
(Sum of all numbers)

N

We now have all the information, we need to start designing the

algorithm.

What is involved in this problem

The outline procedure we can now define:

a) We have to INPUT the numbers, and

b) Perform two calculations on these numbers. First we calculate

the Mean and then use the Mean value to calculate the

Standard Deviation, then

c) Output the results.

Design the algorithm

This gives the detailed procedure for the steps needed to solve the

problem:

a) INPUT

The numbers are going to be input into an array because they

will be needed twice in the calculation module.

b) 1. Calculate: the Mean-

Add all the numbers in the array and divide by N.

2. Calculate: the Standard Deviation -

Total the squares of all the numbers in the array.

Use the formula to calculate S.

c) Output: the Results —

The results will be printed on new lines with the words

MEAN - and STANDARD DEVIATION -

followed by their values.

217

5. The Tree Diagrams

Each of modules 1.1, 1.2 and 1.3 will be subroutines. These will be

called in the appropriate sequence by the main program module.

218

CALCULATE STANDARD
DEVIATION

6. The Flowcharts The Input Subroutine

flowchart:

The Main Program

module flowchart:

220 22

The Processing

Subroutine flowchart:

FORMULA
NOT **.

RETURN

The Output

Subroutine flowchart

7. The Program

7.1 The Main Program Module

5 REM "©DEVIATION"
tO REM **********************

**MAIN PROGRAM MOD **
20 REM **INPUT DATA **
30 GOSUB 100
40 REM **CALCULATE**
50 GOSUB 200
60 REM **PRINT RESULTS**
70 GOSUB 400
SO STOP

90 REM **END MAIN **

7.2 The Input Subroutine Module

95 REM **********************
**INPUT SUBROUTINE **

100 DIM Y(50)
110 PRINT “HOW MANY NUMBERS?“5
120 INPUT N
130 PRINT N
140 FOR 1=1 TO N
150 INPUT Y(I)
160 PRINT YCI)?“ “?
170 NEXT I
180 RETURN

190 REM **END INPUT SUB **
** ** * * ** ** **** ** * * ****

7.3 The Calculation Module

200 REM **********************
**CALCULATION SUB **

210 LET SUM=0
220 FOR 1=1 TO N
230 LET SUM=SUM+Y <I)
240 NEXT I
250 LET MEAN=$UM/N
260 LET SUMSQR=0
270 FDR 1=1 TO N
280 LET SUMSQR=8U MSQR+

CY<I) ** 2) [f Spectrum]
290 NEXT I
300 LET S= SQR ((SUMSQR/N)-

(MEAN ** 2))
310 RETURN

320 REM **END CALC SUB **

7.4 The Output Module

400 REM **********************
**OUTPUT SUBROUTINE **

410 PRINT
420 PRINT UMEAN=“‘MEAN
430 PRINT

440 PRINT “STANDARD DEVIATION
mII ■ C;

450 RETURN

460 REM #*END OUTPUT SUB **

8. Documentation

1) This program will compute and print the Mean and Standard

Deviation of a collection of data items (numbers).

2) It allows for a maximum of 50 items to be entered. You can

increase the size of array Y if you wish to deal with more data.

3) The numbers can be of any size, positive or negative, to the

limit of the computer’s handling capacity. This is large — you
will not exceed it.

4) To run the program key in RUN, and enter numbers one at a

time, pressing NEWLINE (ENTER) after each one has been
keyed in.

Sample run to find Mean and Standard Deviation of 30, 31,

32,5,6,7,10,13,27,3:

HOW MANY NUMBERS ? 10

30 31 32 5 6 7 10 13 27 3

MEAN « 16.4

STANDARD DEVIATION = 11.45603

Exercise

The example program to compute and print the standard deviation of a

set of data items does not include a pseudocode description of the

algorithm, and the documentation process is incomplete in other ways

too. Complete the programming procedure by doing the following:

1. Write out a pseudocode description of the algorithm.

2. Perform a pre-coding walk through, checking the values of

the variables, counters and expressions for each subroutine
module.

3. Key in the program and debug it.

4. Insert breakpoints in each subroutine and perform a program

trace. Insert PRINT statements to print out values of

variables, counters and expressions.

5. Obtain a program listing from the printer and run the

program for a sample set of data. Keep a copy of the printer
output.

6. Document the program fully in your notebook.

224 225

226

CODE/C HR$

147 inverse <
148 inverse =
149 inverse +
150 inverse -

151 inverse *

152 inverse /

153 inverse >
154 inverse >
155 inverse
156 inverse 0
157 inverse 1
158 inverse 2
159 inverse 3
160 inverse 4
161 inverse 5
162 inverse 6
163 inverse 7
164 inverse 8
165 inverse 9
166 inverse A
167 inverse B
168 inverse C
169 inverse D
170 inverse E
171 inverse F
172 inverse G
173 inverse H
174 inverse I
175 inverse J
176 inverse K
177 inverse L
178 inverse M
179 inverse N
180 inverse O
181 inverse P
182 inverse Q
183 inverse R
184 inverse S
185 inverse T
186 inverse U
187 inverse V
188 inverse W
189 inverse X
190 inverse Y
191
192
193
194

inverse

AT
TAB

Z

195
196
197
198
199
200
201
202

(NOT USED)
CODE
VAL
LEN
SIN
COS
TAN
ASN

CODE/C HR$

203 ACS
204 ATN
205 LN
206 EXP
207 INT
208 SQR
209 SGN
210 ABS
211 PEEK
212 USR
213 STR$
214 CHR$
215 NOT
216 **
217 OR
218 AND
219 <«
220 > =
221 <>
222 THEN
223 TO
224 STEP
225 LPRINT
226 LLIST
227 STOP
228 SLOW
229 FAST
230 NEW
231 SCROLL
232 CONT
233 DIM
234 REM
235 FOR
236 GOTO
237 GOSUB
238 INPUT
239 LOAD
240 LIST
241 LET
242 PAUSE
243 NEXT
244 PI
245 PRINT
246 PLOT
247 RUN
248 SAVE
249 RAND
250 IF
251 CLS
252 UNPLOT
253 CLEAR
254 RETURN
255 COPY

227

Of the non-printing characters, those that are used, but print a question

mark, are the following:

116-121 inclusive

126-127 inclusive

(NOTE: 5 is the question mark.)

192 is the Quote image character, which prints a single quote. The

character set is coded with the numbers 0 to 255. This, you may recall,

is the number of values held in a single byte. The characters can thus

be accessed with a single byte identification code. This is also the

reason why some codes are listed, but have no character associated

with them. The same is true of the Spectrum character set, which

follows.

P2: Spectrum Character Set and Codes

Code Character Code Character Code Character

0 ' 35 # 70 F
1 36 $ 71 G
2 37 % 72 H

3 > not used 38 & 73 I
4 39 ' 74 J
5 J 40 (75 K
6 PRINT comma 41) 76 L
7 EDIT 42 * 77 M
8 cursor left 43 + 78 N
9 cursor right 44 > 79 O

10 cursor down 45 - (minus sign) 80 P
11 cursor up 46 81 Q,
12 DELETE 47 / 82 R
13 ENTER 48 0 83 S
14 number 49 1 84 T
15 not used 50 2 85 U
16 INK control 51 3 86 V
17 PAPER control 52 4 87 w
18 FLASH control 53 5 88 X
19 BRIGHT control 54 6 89 Y
20 INVERSE control 55 7 90 Z
21 OVER control 56 8 91 [
22 AT control 57 9 92 /
23 TAB control 58 ; 93]
24 1 59 j 94 t
25 60 < 95
26 , 61 96 £
27 > not used 62 > 97 a
28 1 63 ? 98 b
29 64 @ 99 c
30 65 A 100 d

31 , 66 B 101 e
32 space 67 C 102 f
33 I 68 D 103 g
34 ft 69 E 104 h

Code Character Code Character

105 i 159 (p)1 213 MERGE
106 j 160 (q) 214 VERIFY
107 k 161 (0 215 BEEP
108 1 162 (■) 216 CIRCLE
109 m 163 (t) 217 INK
110 n 164 (U)J 218 PAPER
111 o 165 RND 219 FLASH

112 P 166 INKEY$ 220 BRIGHT
113 q 167 PI 221 INVERSE
114 r 168 FN 222 OVER
115 s 169 POINT 223 OUT
116 t 170 SCREENS 224 LPRINT
117 u 171 ATTR 225 LLIST
118 V 172 AT 226 STOP
119 w 173 TAB 227 READ
120 X 174 VAL$ 228 DATA

121 y 175 CODE 229 RESTORE

122 z 176 VAL 230 NEW
123 { 177 LEN 231 BORDER

124 1 178 SIN 232 CONTINUE
125 } 179 COS 233 DIM

126 "V/ 180 TAN 234 REM

127 © 181 ASN 235 FOR

128 □ 182 ACS 236 GO TO

129 H 183 ATN 237 GO SUB

130 E 184 LN 238 INPUT

131 B 185 EXP 239 LOAD

132 □ 186 INT 240 LIST

133 a 187 SftR 241 LET
134 H 188 SGN 242 PAUSE
135 m 189 ABS 243 NEXT
136 □ 190 PEEK 244 POKE

137 191 IN 245 PRINT
138 1 192 USR 246 PLOT

139 r 193 STR$ 247 RUN
140 y 194 CHR$ 248 SAVE

141 a 195 NOT 249 RANDOMIZE

142 gy 196 BIN 250 IF

143 ■ , 197 OR 251 CLS
144 (a) 198 AND 252 DRAW
145 (b) 199 < = 253 CLEAR
146 (c) 200 > = 254 RETURN
147 (d) 201 <> 255 COPY
148 (e) 202 LINE

149 (0 203 THEN

150 (g) 204 TO

151 (h) 205 STEP

152 (i) 206 DEF FN

153 0) 207 CAT

154 (k) user 208 FORMAT

155 (1) graphics 209 MOVE

156 (m) 210 ERASE

157 (n) 211 OPEN #

158 (o) . 212 OPEN #

228 229

There is an important point to be noted with regard to the Spectrum

character set, which does not apply to the ZX81. Among the Spectrum

character set, codes 16 to 23 are control characters which are

used to specify certain attributes of the character cell for printing

purposes. These require arguments within a certain range (0 to 9 for

colours, or 0 and 1 for on or off, etc.). Codes 6 to 14, 22 and 23 are also

control characters for printing and editing. The problem with using

CHR$ with these control characters is that they can be used in

programs, and are then called by inserting, e.g. CHR$ 20, followed by

the argument. This means that a simple call to PRINT one of these

CHR$ will cause the computer to think it is being given an instruction,

and the syntax demands an argument. If this is not forthcoming after

the CHR$, or the argument is in the wrong range, an error message

results when the Spectrum cannot do what it thinks it is being asked to

do.
Some of these control characters, however, for colour (dealt with in

Section W), and also for print control can be usefully placed in

programs. If we take CODE 8, which is a cursor control character, we can

write a program like this:

10 PRINT “SIN”;

20 PAUSE 50

30 PRINT CHR$ 8;CHR$ 8;“ACRED”

The CHR$ 8 instructions in line 30 backspace the cursor twice, re¬

setting the PRINT position, so that “ACRED” overprints “IN”. The

upshot of this is that we cannot print out the character set of the

Spectrum completely, but must start from CODE 24, after the control

characters. This is no great loss, since they print (or would print, if you

could get them to!) either a space or a question mark. Remember these

control characters, though, as they can sometimes be useful in a

program, although mostly it is far more convenient to use the BASIC

instructions. For example, we can use CHR$ 23 instead of TAB:

10 PRINT CHR$ 23; 10; “TAB CONTROL”

This is not an advantage over using TAB! However it does show how

these characters are used by the computer - it inserts them into

program listings where the control function (e.g. TAB), has been used.

TAB itself does not have a control function, and needs CHR$ 23 placed

after it to work.

P3: Characters

The ZX81 and Spectrum have a character alphabet consisting

of 256 items which include numeric characters, alphabetic

characters, keywords, instructions, commands, operators,

graphics and inverse graphics symbols and other symbols. As

seen in the tables in the previous Units, of these 256 items

some are not used at all, and some are non-printing (i.e.

control characters).

In Appendix III the ZX81 character codes are laid out by

character type and their position on the keyboard. Spectrum

codes are referenced alphabetically in Unit Wl.

The CODE (occupying a single byte) identifies each

character uniquely for input/output purposes - i.e. input

from the keyboard and output to the screen or printer.

The ZX81 has a non-standard character set unique to the machine.

The Spectrum has a character set in which the characters used have the

codes of the ASCII character set (an internationally agreed standard)

for the most part. Non-standard ASCII characters are the symbols for

£ and ©, and the graphics characters.

P4: CHR$ and Code

The purpose of the instructions CODE and CHR$ is to convert from

the code to the character and vice versa. The ZX81 and Spectrum have

different character sets and codes, but the instructions work in the

same way.

CODE

CODE is a function that takes a character or string and gives

as a result the numeric code that the character (a single

letter string, or first character in a string) cor¬

responds to. For example:

CODE S gives 56 on the ZX81, 83 on the Spectrum

CODE “ABCD” gives CODE A, 38 on the ZX81, 65 on the

Spectrum

CODE X$ gives the code of the first (or only) character

in X$

CODE B$(3) gives the code of the third character in D$,

CHR$

CHR$ (N), where N is a numeric expression with a value

0 < = N < = 255, is a function that gives as a result the single

character whose code is N. CHR$ does the opposite of CODE.

For example:

CHR$ (A + B + C)

CHR$ (X/Z)

CHR$ (INT(RND * 255))

CHR$ 36 gives 8 on the ZX81, $ on the Spectrum

230 231

To see the inverse relationship of CHR$ and CODE, key in the

following as direct commands:

PRINT CHR$ 50

PRINT CODE “2”

PRINT CODE CHR$ 50

PRINT CODE “A”

PRINT CHR$ 38

will print M on the ZX81, 2 on the

Spectrum

will print 30 on the ZX81, 50 on the

Spectrum

will print 50

will print 38 on the ZX81, 65 on the

Spectrum

will print A on the ZX81, & on the

Spectrum

PRINT CPIR$ CODE “A” will print A

The next program will print out all the characters used on the ZX81.

10 FOR F=0 TO 255
20 SCROLL
30 PRINT Fi CHR$ F
40 NEXT F

For the Spectrum, as noted above, we must miss out some CHR$ and

line 20. Line 10 must read FOR F = 24 TO 255. Key it in and run it.
Add:

35 LF'RINT Ff TAB 6! CHR$ F

to get a printer listing. A better program (since it uses less printer

paper!) but one with an expression you won’t understand until we

cover logic, is this one:

10 REM ^CHARACTER SET**
20 LPRINT "C0DE/CHR$"; TAB 10;

"C0DE/CHR$"! TAB 20;"C0DE/CHR$"
30 FOR F=0 TO 85
40 LPRINT F; TAB 4; CHR$ F;

TAB 10;F+861 TAB 14; CHR$
CF+86)! TAB 20;(F+172 AND
F+172C256)f TAB 24; CHR$
(F+172 AND F+172<256)

50 NEXT F

Use these lines for the Spectrum version:

30 FOR F=24 TO 77
40 LPRINT F; TAB 4; CHR$ Ff

TAB 10;F+77f TAB 14; CHR$
(F+77); TAB 20;F+154? TAB 24;

CHR$ (F+154)

Exercises

1 Key in and run the following programs. You may find some

surprising results, due to the control characters, on the

Spectrum. No harm will be done.

(a) 10 FOR F = 0 TO 255 (Spectrum: FOR F = 24 TO 255)

20 PRINT CHR$ F;

30 NEXT F

Notice that the word characters print with the spaces that

your computer automatically inserts in program lines.

(b) 10 RAND

20 PRINT CHR$ INT (128* RND+ 128)

30 GOTO 20

(c) 10 INPUT A$

20 PRINT A$, CODE A$

30 GOTO 10

(d) 10 PRINT “INPUT STRING OF 6 CHARACTERS”

20 INPUT A$

30 FOR F = 1 TO 6

40 PRINT A$(F), CODE A$(F)

50 NEXT F

(e) 10 RAND

20 IF INT (RND*2) = 1 THEN PRINT CHR$ INT

(RND*128)

30 IF INT (RND*2) = 0 THEN PRINT CHR$

(INT(RND* 128) + 128)

40 GOTO 20

(f) 10 RAND
20 LET A$ = CHR$ INT (RND* 255)

30 SCROLL

40 PRINT CODE A$, A$

50 GOTO 20

In this last program, Spectrum owners can omit line 30 and

simply respond to the Scroll? prompt by pressing ENTER.

2 Write a program that given a number (code), will check that

0 < = code < = 255, and will print out the character. On the

Spectrum, the program should print “CONTROL

CHARACTER” if the CODE is between 6 and 23.

3 Write a program that when given an alphabetic character as an

input will print out the next in the alphabet. If the character

input was ‘Z’ then ‘A’ should be printed.

232 233

SECTION Q: GRAPHICS

Ql: More Printing

Since we dealt with the PRINT instructions, you have been introduced

to other statements that can be used with the PRINT statements for

format and manipulation.

Loops are of use in printing. For instance we can set up an empty

string with 32 spaces and use it to clear different areas:

20 LET A$ = “(32 spaces)”

30.

40.

100 FOR X= 11 TO 21

110 PRINT AT X, 0; A$

120 NEXT X

will clear the bottom half of the screen, and we could use it repeatedly,

as a subroutine, if we wished. We then avoid using CLS, which would

mean re-printing anything that we wanted to keep on the screen.

Except for numbers, anything we wish to print must be in the form

of a string, either between quotes, a string variable, part of a string

array, or a CHR$(X) instruction.

Obviously any operations or functions used with strings may be

useful, and in the same way as:

10 PRINT (1+3)

prints 4, we can use:

20 PRINT A$ (X TO Y)

to extract the desired characters of A$.

Enter and run this program

10 LET A$”“ABRACADABRA"
20 LET L= LEN A$
30 FOR X=1 TO 6
40 PRINT TAB 10+X?A$<X TO

L+l-X)
SO NEXT X

Remember that numbers can always be treated as strings, and vice

versa, using VAL and STR$. This is often useful for formatting

numbers. For example, with a number X, this program:

10 LET A$="00G0"
20 LET B$= STR* X
30 FOR F=1 TO 4
40 IF LEN B$<F THEN GOTO 70
50 LET A$CF)=B*(F)
60 NEXT F
70 PRINT A$

will print the first four digits of any number, or follow the number with

zeros if less than 4 digits. Change the zeros to spaces, and you have a

number string that will overprint any other string however many digits

are in the original.

Code the program in with A$ « “(4 spaces)” and try it. As it is, you

will have to enter X as a direct command (LET X=123, then

NEWLINE/ENTER) and then use GOTO 10, since RUN would

clear the variables (in this case, the value of X you have just entered).

This principle can be expanded. Here is an example of a subroutine

used to justify numbers and print them in the position required for the

decimal places to be in the same column:

10 REM "FORMAT"
20 REM *FORMAT SUBROUTINE FOR*

*NUMBERS *
30 REM *COLUMN NUMBER FOR *

^DECIMAL PLACE *
40 LET C=12
50 REM INITIALISE G0SUB*
60 LET FORMAT=9000
70 REM *NUMBER*
80 INPUT N1
90 REM *INITIALIZE NUMBER*

100 LET N=N1
110 G0SUB FORMAT
200 REM *M0RE NUMBERS*
210 FOR L=1 TO 4
220 INPUT N
230 G0SUB FORMAT
240 NEXT L

8980 GOT0 9999

8990 REM **********************
**SUBROUTINE **

9000 LET N$= 8TR$ N
9010 LET P=0
9020 FOR F=1 TO LEN N$
9030 IF N$(F) = ". " THEN LET P=F
9040 NEXT F
9050 IF P*1 THEN LET N$="0"+N$
9060 LET P=P+CP=1)
9070 IF P=0 THEN LET F- LEN N*+l
9080 PRINT TAB COP+1 > ? N*
9090 RETURN

9100 REM **ENDSUB**************
9999 STOP

Lines 10 to 240 are a main program to initialise and provide numbers

for the subroutine. Notice it adds a 0 if the number is a decimal. Line

234 235

9030 sets a marker for a decimal point in the first letter of the number

string, and adding a 0 is done in line 9050. 9060 uses the logical value of

(P = 1) to add 1 if a zero was added, i.e. if P = 1 is true. This will be

explained in the Section on Logic, but the line is equivalent to IF P = 1

THEN LET P = 2. Check this by trying both versions of the line. Line

9070 adjusts the length of the string if there is no decimal place found

(i.e. if the number was an integer). 9080 prints the number in the

correct column.

The next program shows a simple way of tabulating results, using a

loop:

10 PRINT “NO.”;TAB 4; “ SQUARE” ;TAB 12;

“CUBE”;TAB 20;“RECIP”

20 FOR N= 1 TO 10

30 PRINT N;TAB 4;N*N;TAB 12;N**3; (f on Spectrum)

TAB 20;1/N

40 NEXT N

NO. SQUARE CUBE RECIP

1 1 1 1

2 4 8 0.5

3 9 27 0.33333333

4 16 64 0.25

5 25 125 0.2

6 36 216 0.16666667

7 49 343 0.14285714

8 64 512 0.125

9 81 729 0.11111111

10 100 1000 0.1

It is important to remember that numbers are output with 8 figures and

allow the appropriate space. An alternative

figures you want and use the INT function.

is to decide how many

For example, we

.5)/lE4 , and get a

can replace 1/N in line 30 by INT(1E4*(1/N)+

printout like this:

NO. SQUARE CUBE RECIP

1 1 1 1

2 4 8 0.5

3 9 27 0.3333

4 16 64 0.25

5 25 125 0.2

6 36 216 0.1667

7 49 343 0.1429

8 64 512 0.125

9 81 729 0.1111

10 100 1000 0.1

236

Using the E notation allows easy definition of the number of decimal

places, without the possibility of missing a zero as, for example, if we

used INT(10000*(1/N) + .5)/10000, since using 1E4 gives four d.p.,

1E3 three d.p., etc. In using this, be careful with the bracket placing,

as INT(1E4*(1/N)) + .5/1E4 will not round! Try both the correct and

incorrect versions in the program.

You should note that:

With PRINT TAB C; or PRINT AT L,C instructions L and C

can be dependent or calculated variables. For example:

PRINT TAB (X*2)/3;
PRINT AT 10, 20/X;

Try these:

10 FOR X = 1 TO 5

20 PRINT AT X, X * 2;X

30 NEXT X

10 FOR X = 1 TO 5

20 PRINT TAB X * 2;X

30 NEXT X

An automatic INT function operates with PRINT AT

instructions.

For PRINT AT (L), (C); if (L) and (C) > n and < n + 1,

(L) and (C) - n

For example:

PRINT AT 3/2, 10.5;“. . .”

equals PRINT AT 1,10;“. . .”

Try this:

10 FOR X = 1 TO 10

20 PRINT AT X, X/2; X

30 NEXT X

The AT function rounds down, exactly as if we had used PRINT AT

X, INT (X/2);X as line 20.

PRINT TAB(N), where N is non-integer, rounds to the nearest

integer.

TAB N, where N is between X and X + 1, gives TAB X if

N< X + .5 and TAB X + 1 if N> = X + .5. For example

TAB (1.3) = TAB 1

TAB (1.5) = TAB 2

237

To see the difference, RUN both these programs, use COPY to get a

printout, and compare the results.

10 FOR X=0 TO 10
20 PRINT TAB X/2?X
30 NEXT X

10 FOR X=0 TO 10
20 PRINT TAB I NT CX/2)?X
30 NEXT X

You must also watch for arithmetic mistakes in calculating the PRINT

position. For instance:

10 FOR X=0 TO 10
20 PRINT TAB 20/X?X
30 NEXT X

is not going to get past line 20 the first time round! Why?

This next example illustrates the use of PRINT AT to give changing

display.

A die is rolled and we wish to display its value for each of a series of

throws. In addition we require cumulative values after each throw.

Thus each time line 90 is reached it overprints line 70 and vice versa.

Similarly line 120 overprints itself after each throw.

3 REM "DICEROLL"
10 PRINT "NUMBER OF THROWS?"
20 INPUT X
30 DIM N(6)
35 CLS
40 PRINT AT 8i6?"CUMULATIVE VA

LUES"
50 PRINT AT 10?4J lT**#2#*#3*#*

4###5###6"

60 FOR M=1 TO X
65 PRINT AT 1«8?"THROW"? TAB 1

4?"VALUE"
70 PRINT AT 3t10?"*"
80 LET A* INI <6# RND +1)
90 PRINT AT 3»10?MiA

100 LET NCA)=N(A)+1
110 FOR 33= 1 TO 6
120 PRINT AT 12» 4*B? N(B)
130 NEXT B
140 NEXT M

(N.B. Choose a relatively small value for X (say 24) or the program

will take a long time to run.)

Exercises

1 Modify the FORMAT subroutine to round the number to 3

decimal places before determining the print position.

2 Modify your result for the exercise above to print zeros for any

decimal place not filled.

3 Write a program that displays the result of throwing three dice,

displaying the result for each die, and the total value for each

throw. Overprint the last result with each new one, and store the

total values resulting. After the specified number of throws,

derive the average value for a throw.

Q2: More Plotting

Although the definition of the graphics on the ZX81 is low, the

computer has the capacity to draw useful graphs, and most graphics

processes can be illustrated. This is a program that draws a line

between two specified points:

10 INPUT XI
20 INPUT Y1
30 INPUT X2
40 INPUT Y2
50 LET X=X(2) -X(l)
60 LET Y=Y{2) -Y(1)
65 LET A =(X AND ABS X>=ABS Y) +

(Y AND ABS X<ABS Y)
70 LET DX=0
80 LET DY“0
90 FOR F=1 TO ABS A

100 PLOT DX-fX(l), DY+Y(1)
110 LET DX =DS+X/ABS A
120 LET DY=DY+Y/ABS A
130 NEXT F

The logic in line 65 checks which is the greater of the distances to be

covered between the points, and makes A equal to that, since the

smaller value will be in a false statement, and will be evaluated as 0.

You will have to wait until we deal fully with logical operations for the

explanation of the reason this works. The program library has an

expanded version of this program (“LINE”).

Spectrum owners should relish the fact that their machine’s ability to

accept a simple DRAW X,Y statement makes this entire program

redundant. Study the principle, however.

Subroutines can be used for plotting. If you recall our dog-plot, here

is an example of a subroutine used to fill the screen with dogs. The

subroutine for this is between lines 300 and 430 and is based on a grid

(8 horizontal by 5 vertical):

10 REM "DOGS"
20 FOR X=0 TO 50 STEP 10
30 FOR Y=10 TO 40 STEP 10
40 G0SUB 300

238 239

45 NEXT Y
50 NEXT X
60 GOTO 700

300 REM **DOG PLOT**
310 PLOT X,Y
320 PLOT X+1,Y-1
330 FOR N“2 TO 4
340 PLOT X~H2,Y~N
350 NEXT N
360 PLOT X+3,Y~2
370 PLOT X-t4,Y~2
380 FOR N™1 TO 4
390 PLOT X4-5,Y-N
400 NEXT N
410 PLOT X-H5 ,Y
420 PLOT X+7,Y-1
430 RETURN
700 REM **END**

With plots of functions where the values of Y are not visible by

inspection, we can use the computer to ascertain them and derive the

appropriate scale factor.

For a function producing positive values of Y, we can use a routine

as below. We set A and B as the values of X between which we want to

plot the value of Y, and store the largest number encountered in a

variable MAXY. The routine is for the ZX81. Spectrum users would

need to use 240 in place of 60 (line 40), and 160 instead of 40 (line 80).

10 LET A=(MINIMUM VALUE OF X)
20 LET B=(MAXIMUM VALUE OF X)
30 LET MAXY-0
40 FOR X=A TO B STEP <B-A>/60
50 LET Y=(FUNCTION OF X)
60 IF Y>MAXY THEN LET MAXY=Y
70 NEXT X
80 LET SY=40/MAXY

Adding the following lines gives us the plot:

90 FOR XSA"-A TO B-A STEP <B-A>
/60

100 LET Y=X*X
110 PLOT X*60/(B-A)iY*SY
120 NEXT X

Spectrum: 240 not 60 in line 90.

Notice that all the function values are calculated twice. It would be

neater to set up either two lists, or a two dimensional numerical array

(X(60) and U(60) or X(2,60)), and store the values the first time

round. Try this when we have dealt with numerical arrays. Run the

program, using different values of X in lines 10 and 20 and some

different equations in line 50 (and the same one in line 100). Try

X**2 + 3X, X**3 - 6X + 2, etc. (fin place of ** if using Spectrum).

Revise the program to allow inputs in lines 10 and 20.

Movement and Timing

We can deal with the two topics of time and motion together. We will

introduce and illustrate the new functions concerned, and then look at

them in combination.

The first new commands (which only apply to the ZX81) are FAST

and SLOW. If the screen display is to be continuous, the ZX81 has to

read and print on screen the contents of the display file fifty times a

second (sixty times a second in the U.S.). It can then only compute in

the gaps between doing this. Up to now, we have used this continuous

compute and display mode exclusively. This is SLOW mode on the

ZX81. The Spectrum works in the equivalent of the ZX81 FAST

mode, and displays the screen at the same time:

SLOW allows a continuous screen display. Computations are

performed in the intervals between reprinting the screen.

SLOW may be used as a direct command or in a program line.

FAST blanks out the screen, and the ZX81 computes faster,

not needing to break off to display the screen. Screen display

is restored when

(i) the program ends

(ii) the program stops to await input

(iii) the program goes into SLOW mode

(iv) the program is instructed to PAUSE.

The screen display is updated during FAST, but only printed

at a break in the program.

FAST mode is used whenever it is necessary to perform a large number

of calculations on the ZX81, and a screen display is not vital. To

illustrate the two modes, enter and RUN this program:

10 SLOW

20 FOR X = 1 TO 20

30 LET Z = X*X* *X/X* *X

40 PRINT Z;

50 NEXT X

Line 10 is redundant, the ZX81 will already be in SLOW mode. But

now change it to:

10 FAST

and RUN. Change it back and, by counting, see what the difference in

timing is between the two modes. You can also delete line 10, and shift

between the modes by using direct commands. Note the flash of the

screen when you input lines from the keyboard in FAST mode. This

240 241

makes it easy to tell which mode you are in. The ZX81 computer is

always in SLOW mode at switch on, and if you are shifting between

the two modes, using direct instructions, then the characteristic flash

will let you know if FAST is the current mode.

PAUSE

PAUSE causes the execution of a program to halt for the time

specified. The screen display is shown on the screen during

the PAUSE. Pressing a key during a PAUSE will cut the

PAUSE short and the program will continue.

PAUSE N gives a delay of N/50 seconds (N/60 seconds in

the U.S.)
PAUSE 150 gives a delay of 3 seconds (2 Vi seconds in the

U.S.)
If N>32767 the PAUSE will continue until a key is pressed

on the ZX81.
If N = 0 the PAUSE will continue until a key is pressed on

the Spectrum.

PAUSE allows us to insert a specific delay in a program. It also allows

us to cause the program to wait for a key to be pressed before the

program will continue. The following program illustrates both these

functions:

10 PRINT "PROGRAM START"
20 PAUSE 100
30 PRINT "2 SECONDS"
40 PAUSE 100
50 PRINT "4 SECONDS"
60 PAUSE 200
70 PRINT "8 SECONDS"
80 PRINT "NOW PAUSE UNTIL KEY PRESSED"

90 PAUSE 40000
100 PRINT "END"

Spectrum users must enter line 90 as 90 PAUSE 0.

PAUSE is useful in programs run in FAST mode on the ZX81, since

the display file is shown on the screen during a PAUSE, and we can use

this directly to get a screen display for a specified time.

PAUSE used the system variable FRAMES to count in units of

1/50th of a second (l/60th second in the U.S.). This is set by the a.c.

power supply frequency to the TV monitor, which governs the number

of times a second the screen display is refreshed, which is why the

timing varies in different countries.
When a PAUSE commences on the ZX81 the screen ‘flashes’. This

can be irritating. It can be avoided by use of an empty FOR...NEXT

loop, which does not produce this effect. The time delay is less precise,

but for non-timing functions - providing a delay whilst instructions are

read, for example - it is easily modified to suit.

10 PRINT "START"
20 PRINT "2SEC0ND DELAY"
30 PAUSE 100
40 PRINT "FOR„..NEXT LOOP"
50 FOR X = 1 TO 150
60 NEXT X
70 PRINT "END"

The next instruction can be used in a program line by the ZX81 only.

It does not exist for the Spectrum. The definition and discussion apply

only the the ZX81, but the method of achieving the same effect on the

Spectrum is given below.

SCROLL

SCROLL moves the whole screen up one line, deleting the top

line, and sets a new PRINT position at the start of the new

bottom line.

To see this work, try this program:

10 FOR X = 1 TO 10

20 PRINT X

30 IF X>5 THEN SCROLL

40 NEXT X

We can use SCROLL to clear printout on the top of the screen, but we

must remember that if we use SCROLL the print position changes.

We can, however, use PRINT AT instructions to avoid the bottom line

print position. Delete line 20 in the above program and insert:

35 PRINT AT X, 0; X

Notice that we have to be careful of where we put SCROLL, and when

we use it. We can use it to prevent a ‘screen full’ error message, but

unless we want all lines rising from the bottom of the screen we have to

specify when to use it.

We can set a line to use SCROLL at the correct place:

10 FOR X = 1 TO 50

20 PRINT X

30 IF X>21 THEN SCROLL

40 NEXT X

Scrolling on the Spectrum is automatic, the ‘scroll?’ prompt

appearing when the screen is full. When any key other than BREAK

and ‘N’ is pressed, the screen scrolls to display the next screenful of

information. To get the same effect as is produced by the ZX81

242
243

SCROLL instruction in a program, which can be useful, the procedure

on the Spectrum is as follows:

1. The value of - 1 must be POKEd into a system variable at memory

address 23692. This is done with a program line ‘POKE 23692, - T.

2. Something must be printed on line 21. This can be just a space, or it

may be the first thing you wish to print in a sequence that will have all

printing coming up from the bottom of the screen.

3. Scrolling will then occur, one line at a time, whenever another

PRINT instruction is given.

A simple program illustrates this:

10 POKE 23692, - 1

20 PRINT AT 21,0;“PRINT HERE TO CAUSE SCROLL”

30 PAUSE 50

40 PRINT “SCROLL”

50 PAUSE 50

60 PRINT “SCROLL AGAIN”

The PAUSE instructions merely cause a delay to enable you to see the

process properly. The PRINT item in line 20 could be a space, as long

as it is something printed on the bottom line. Try this program:

10 POKE 23692,-1

20 PRINT AT 21,0;“ ” (Single space)

30 FOR F = 1 TO 10

40 PRINT “PRINT”

50 NEXT F

We can use SCROLL, or the Spectrum equivalent, to create a moving

screen display. Try this:

For the ZX81 For the Spectrum

10 FOR X = 0 TO 30 STEP .3 10 FOR X = 0 TO 30 STEP .3

20 LET L= 15 + 14*SIN X 20 LET L = 15 + 14*SIN X

30 PRINT TAB L; “ZX” 30 PRINT TAB L; “ZX”

40 IF X>6.3 THEN SCROLL 40 POKE 23692, - 1

50 NEXT X 50 NEXT X

Spectrum users please note also that the POKE instruction will work if

it is given as line 5 in the program, and line 40 deleted. Try it.

Try this for a rocket launch:

10 PRINT AT 18,17? "H"
20 PRINT , "MO"
30 PRINT
40 PRINT i "™S"
50 FOR 0=10 TO 0 STEP -1
60 PRINT AT 1,ISC?" "
70 NEXT C

244

80 PRINT "BLASTOFF"
90 FOR X=1 TO 22

100 SCROLL
110 PRINT ," V"
120 NEXT X

!

Spectrum users need to delete line 100, and insert 85 POKE

23692,- 1.

Whilst on the subject of scrolling, here is a routine that scrolls a line

of text across the screen from left to right. Input a name (inverse

characters look better), or a line of text, and fill out the line with some

graphics characters. Lines 20, 50 and 60 fill up the line to 32 characters

with black squares. The technique can be used with several lines of

text, but is too slow to be useful if dealing with a full screen;

■5 REM #INPUT A NAME*
(NICER IN INVERSE)

6 REM *REPEAT IF LINE NOT*
^FILLED*

10 INPUT A$
20 IF LEN A$<32 THEN GOTO 60
30 PRINT AT 10? 0? A$
40 LET A$=A$(LEN A$)+A$(l TO

LEN A$-1)
50 GOTO 30

60 LET A$~A$+'W
70 GOTO 20

When you have keyed in the program, try deleting “AT 10,0,” in line

30. This gives an effective full-screen display.

Games programs often utilise interactive graphics, via the INKEY$

function. A SKETCH program as below shifts the PRINT position

around. Note that on the Spectrum. INKEY$ is not totally reliable.

Add PAUSE 0 to ensure it works.

10 LET Xs10
20 LET Y=10
30 PRINT AT Y? X? I,*H
40 LET X=X-(INKEY$ ="5" AND

X>0>+< INKEY$ = “8" AND X<31>
50 LET Y=Y-< INKEY$ ="7M AND

Y>0)+(INKEY$ =“6" AND Y<21)
60 GOTO 30

This uses logical values to do a multiple operation in lines 40 and 50,

which both adds or subtracts 1 to the values of X and Y, and keeps the

character within the screen limits. This could be done less efficiently by

the following:

40 IF INKEY$ = “5” AND X>0 THEN LET X = X - 1

50 IF INKEY$ - “8” AND X<31 THEN LET X-X+l

60 IF INKEY$ = “7” AND Y>0 THEN LET Y = Y- 1

70 IF INKEY$ = “6” AND Y<21 THEN LET Y - Y + 1

80 GOTO 30

245

In lines 40 to 70 both conditions have to be true to execute the change

in the values of X or Y. In the original example, these logical tests are

combined (in the brackets) and use is made of the fact that the

computer uses 1 for TRUE and 0 for FALSE. These logical values are

used to change X and Y appropriately, according to which keys are

pressed, but only if the values of X are within 0-31 and the values of

Y are within 0-21 (i.e. within the PRINT AT range).

If, for example, X is equal to 0, then in line 40 above, the combined

conditions of INKEY$ « “5” (true, if it is being pressed) AND X>0

(not true) will be false. The instruction following THEN will not be

executed. Similarly, in the line LET X = X - (INKEY$ = “5’’ AND

X>0) + (INKEY$ = “8” AND X<31) each of the bracketed

expressions is evaluated for truth/falsity. Only one of the bracketed

expressions can be true, and if, for example, the first is true, X will

become X - (l(true)) + (0(false)). Logical operations, which are of

great importance, are fully covered in Section R.

We could add:

35 PRINT AT Y,X;“ ”

to get a single character rather than a line of characters, but our

character flickers and is not on the screen very long.

A better way is to put the values of X and Y into two other variables,

and use these to store the position where a space is to be printed,

overprint as late as possible in the loop.

10 LET X=10
20 LET Y-10
30 PRINT AT Y*X;"*"
35 LET A=Y
36 LET B=X
40 LET X-X-C INKEY$ =“5" AND

X>0>+(INKEY$ =“8“ AND X<31>
50 LET Y=Y-(INKEY$ =>"7" AND

Y>0)+(INKEY$ =“6“ AND Y<21)
55 PRINT AT A*B?" "
60 GOTO 30

To get automatic movement, we need to use loops. Try this:

10 FOR X = 25 TO 0 STEP - 1

20 PRINT AT 11,X;" miHk ”;AT 12, X;448®*1®”

30 NEXT X

PAUSE 10 could be inserted as line 25 on the Spectrum to slow things

down a bit.
Our car moves, but it leaves bits of itself behind. Add a space after

each of the print strings, and the trail is automatically wiped out,

overprinted by the spaces.

10 FOR X = 25 TO 0 STEP - 1

20 PRINT AT 11,X;“ rfifc ”;AT 12,X;“ W®1® ”

30 NEXT X

The alternative, which is slower (and harder on the eyes), is to use

CLS, and reprint the screen. To see the effect, just add:

25GLS

Or try this (which includes, to a rather distorted scale, a gravity effect)

and imagine you are Galileo:

1 REM GRAVITY DROP
10 LET T=0
20 LET H“0
30 PRINT AT 0,5; "H"
40 PRINT AT 21,1;”--”
50 IF H>21 THEN GOTO 110
60 PRINT AT H,10;
70 LET T=T+e 25
80 LET H=INT 32*T*T/10
90 CLS

100 GOTO 30
110 PRINT AT 21,7;"*SMASH*”

The next program utilises graphics to illustrate the principle of the base

current flow through an NPN transistor. The flow of the main current

is indicated by a moving black graphic, and the flow of the base current

by a grey square. Study the program and analyse it so that you can

follow it. The string manipulation is quite complex. By now Spectrum

owners should have mastered converting ZX81 programs for their own

machines. Remember that the values PLOTted on the Spectrum

should typically be four times larger than on the ZX81 in order to get a

picture of a similar size. Apart from this, ‘Transim’ should not present

any problems:

5 REM "TRANSIM"
10 PRINT "SIMULATION OF CURREN

T FLOW IN"j"+VE BIASED NPN TRANS
ISTOP"

20 PRINT i*"PRESS S TO SWITCH
OFF BIAS"*"CURRENT FLOW IN BASE"
mi "PRESS R TO RECONNECT "

30 PRINT n "GRAPHICS SHOW ELEC
TR0N FLOW"* * *"HIT A KEY TO START
u

40 PAUSE 4E4
50 CLS
60 FOR F=9 TO 49
70 PLOT F*9
80 PLOT F*12
90 IF F>26 THEN GOTO 120

100 PLOT 27* F+3
110 PLOT 30*F+3
120 NEXT F
130 UNPL0T 28*12

246 247

140 UNPLOT 29)12
150 PRINT AT 0,5;"* NPN TRANSIS

TOR TAB 5? "*****************

160 PRINT AT 5,17!"BASE"; AT 7,
17;"CURRENT ON“; AT 14)2!"COLLEC
TOR"! TAB 22!"EMITTER"

170 PRINT AT 5)10;"+VE"; AT 18)
0!"+VE <N*N*N*NXPXN*N*N*N> -VE
II

ISO REM **GRAF'HIC STRINGS**
190 LET ft$-11 [BBJ-M.11
200 LET B$^,,rTTW~0 U Li M-JUT1
210 LET S$="C3 B M"
220 FOR N=1 TO 15
230 REM #*GRAPHIGS LOOP**
240 FOR F=i TO 8
250 IF F=1 THEN PRINT AT 7?14?"

■ «
260 PRINT AT 16-Fi14? "B"
270 PRINT AT 16»45B$<F TO F+9)5

A$ (F TO F+1'0)
280 PRINT AT 7i 135 3$Cl TO 3)5
290 IF F=8.AND INKEY$ =“8“ THEM
GOSUB 400
300 PRINT AT 7»145“ "5 AT 16-F?

14?" “
310 NEXT F
320 NEXT N
330 PRINT AT‘21105“PROGRAM HALT

ED. RESTART?CY OR N)H
340 INPUT R$
350 IF R$ <> "Y" THEN GOTO 440
360 PRINT AT 21*0?"

ii

370 GOTO 220

395 REM ***********************
*#BASE CURRENT OFF SUB**

400 PRINT AT 5*10?" "5 AT 7?1
358$(4 TO >5 AT 7*25?“OFF”

410 IF INKEY$ <> "R" THEN GOTO
410

420 PRINT AT 5? 10" "+VE,,5 AT 7? 1
35S$C1 TO 3)5 AT 7? 25?"ON "
430 RETURN

435 REM ** ENDSUB ****

440 CLS
450 REM **END PROGRAM **

Spectrum modifictions: PAUSE 0 in line 40.

The program uses the ‘chunky’ ZX81 plot squares to draw the outline

(lines 60 to 140). Spectrum plot points could be used, but strings of the

graphics characters on keys 1 to 8 would be better. Refer to the screen

diagrams in Unit M2 for the positions on screen requiring printing.

248

Exercises

1. For ZX81 users: Computer performance in terms of speed is

compared by benchmark tests. Write a program that loops 500

times, performing a calculation each time. Run it in FAST and

SLOW modes, and time it.

2. Revise the left to right scroll to work right to left.

3. Write a program that draws a ship and moves it backwards and

forwards across the screen, automatically.

4. Revise the program to move the ship in response to INKEY$

input from the keyboard.

5. Write a program that uses PAUSE to display minutes and

seconds. Check the clock against a watch and improve the

accuracy.

Q4: The Display File

In order to talk about the display file, we must introduce some new

concepts, which are dealt with more fully in a later section of the book

(Section U).

The DISPLAY FILE is the memory picture of the screen

display stored in a sequence of memory locations or addresses

in the computer RAM.

BYTE. Each memory location in the computer stores an 8 bit

(digit) binary number which has a decimal value between 0

and 255.

To interact with the computer’s memory, we use PEEK and POKE.

We are concerned here not with the general instructions (which are

dealt with in Section U) but with some specific uses for these

commands. We will give a definition of PEEK and POKE here, and

then discuss the use of these only in terms of some simple techniques

connected with the screen display that can be of use in graphics.

PEEK (M) returns the contents of the memory address (M) (a

binary number) in decimal form.

POKE (M),(N) inserts the value N (0 to 255) into the

specified memory address, M.

The display files of the ZX81 and Spectrum are organised very

differently. .That of the Spectrum is much more complex, due to the

high-resolution PLOT screen and colour on the machine. We will deal

with the ZX81 display file in some depth below, and then describe the

Spectrum display file. Spectrum users should GOTO page 257, and

omit the ZX81 specific section below, unless they find it interesting for

249

general information. It is useful to know the ZX81 display file system if

you are interested in converting ZX81 programs for the Spectrum, as

some programs use the techniques described below.

On the ZX81;

Each address of the display file stores in a byte a character

code, corresponding to the character to be printed on the

screen.

The display file memory location differs according to the program

length, since it starts where the portion of memory occupied by the

program ends. For any given program the start location is constant.

The DISPLAY FILE start address is stored in the system

variable D-FILE, at memory locations 16396 and 16397.

For the display file memory locations;

PEEK M gives a number (in decimal) which corresponds to

the character code located in the memory address M.

POKE puts into one of these memory locations a character

code.
POKE M, N puts the number (character code) N into

memory address M

The ZX81 has done away with much of the use of POKE in connection

with the display file, because the PRINT AT function actually uses a

routine in the computer that finds out where the display file starts and

then POKEs to it the required characters at the correct position.

To illustrate the work this saves, here is a program that puts ZX at

line 1, column 10, on the screen.

10 LET D « PEEK 16396 + 256*PEEK 16397

20 LET Z - D + (32 + 1 + 11)

30 POKE Z, 63

40 POKE Z+ 1,61

Note that, even though we could write the routine above more

compactly (by missing out line 20 and using POKE D + 44, POKE

D + 45 as lines 30 and 40) it is still rather more complicated than:

10 PRINT AT 1,10;“ZX”

Thus we will not use it unless we have good reason. But let's run

through what we are doing. Do not worry if you cannot fully

understand all of this, you can return to this Section later, when the

memory has been covered.

Line 10 sets D to the values of the ‘D-FILE’ system variable, which

stores the memory location of the start of the display file. The address is

always stored in two bytes (16396 and 16397) of memory and the

second is the more significant byte (i.e. stores the higher value). Hence

the *256 before the second memory location.

PEEK 16396 + 256 * PEEK 16397 returns the value of the

memory location of the NEWLINE (ENTER) character at the

start of the display file.

Line 20 counts along the screen to the position required. The value of

44 has been broken down to show the principle. The D-FILE address

contains the NEWLINE (ENTER) character, which is always present

at the start of the first line. We count 32 for the spaces in line 0, and

then there is another NEWLINE (ENTER) character, marking the

end of line 0. We want the eleventh position (column 10) along the

next line, so we count 11. This gives us a value for the memory location

corresponding to the desired print position. Using this, line 30 prints Z

by POKEing the corresponding character code into this location and

similarly line 40 puts X in the next position along.

Notice that the display file has no correspondence to line and column

numbers, it merely numbers in sequence:

Start Column Newline (Enter)

Newline (Enter) Character

Character 0 1 2 3. 31

(Line 0) 1 2 3 4 5. 33 34

35 36 37 38. 66 67

101 102 .

(Line 21) . 726 727

(Line 22) 728 729 .759 760

(Line 23) 761 762 . 792 793

So to use this technique we only need to find the start location of the

display file once, and allocate a variable to it (D in the program above),

or arrange to re-use a program line with the PEEK commands.

To try to make things a little clearer, try the following program:

10 LET DFILE = PEEK 16396 + 256*

PEEK 16397

20 PRINT “DISPLAY FILE START ADDRESS

IS”, “MEMORY LOCATION DFILE

30 FOR M = DFILE - 8 TO DFILE + 8

40 PRINT M;TAB 10; PEEK M; TAB 18;CHR$ PEEK M

50 NEXT M

250 251

Line 10 PEEKs the D-FILE memory locations, which store the

number of the address in which the first NEWLINE (ENTER)

character of the display File is located.

If you have entered the program exactly as shown - including the

space after “Memory Location” - line 20 will print:

DISPLAY FILE START ADDRESS IS

MEMORY LOCATION 16694

This is followed by a printout like this:

16686 118 ?

16687 0

16688 50 M

16689 3 H
16690 0 B
16691 243 NEXT

16692 50 M

16693 118 ?

16694 118 ?

16695 41 D

16696 46 I

16697 56 S

16698 53 P

16699 49 L

16700 38 A

16701 62 Y

16702 0

This shows a memory address (16686) then the character code it

contains (118) and its character string (in this case 118 is NEWLINE

(ENTER), and prints a *?’). Address 16687 is a space (character code

0) and a space is printed. 16688 contains the number 50, which is the

line number of the last program line, and prints M. Then there is a 3

stored (which is the number of characters in the program line) and

which prints the graphic character, then NEXT (character code 243),

and M again, this time representing the variable M, not the number 50.

Then there is a NEWLINE (ENTER) character (118) marking the end

of the program. The next NEWLINE (ENTER) is at 16694, the start

of the display File, and then there are the codes and characters for

DISPLAY (the First words to be printed on the screen).

To illustrate the use of PEEK and POKE with the display file, here

is a program to draw on the screen. This does essentially the same

thing as the sketch program we met earlier, but it uses the technique of

POKEing characters to the display File directly, instead of via the

PRINT AT function. We give a full listing here, but in fact to run it,

you need only enter lines 190 to 290.

252

10 REM "ARTIST”
20 PRINT "DRAWS A PICTURE BY M

0VING A CHARACTER IN 8 DIRE
CTI0NS"

30 PRINT "TO MOVE IN THE FOLLO
WING DIRECTIONS PRESS THE C
ORRESPONDING KEY"

40 PRINT TAB 10; "NORTH—-W"
50 PRINT TAB 10; "SOUTH—X"
60 PRINT TAB 10; "EAST—D"
70 PRINT TAB 10; "WEST—A"
80 PRINT TAB 10; "NORTHEAST—E"
90 PRINT TAB 10; "SOUTHEAST—C"

100 PRINT TAB 10; "SOUTHWEST—Z"
110 PRINT TAB 10; "NORTHWEST—Q"
120 PRINT
130 PRINT
140 PRINT "TO CHANGE THE CHARAC

TER PRESS S THEN THE CHARAC
TER THEN NEWLINE"

150 PRINT
160 PRINT "DON'T GO OVER THE ED

GE OF THE SCREEN"
170 PAUSE 400
180 CLS
190 LET T=120
200 LET A$="*"
240 POKE PEEK 16396+PEEK 16397*

256+T,CODE A$
250 IF INKEY$="" THEN GOTO 250
270 LET B$=INKEY$
280 LET T=T+(32 AND B$="Z") + (33

AND B$="X")+ (34 AND B$="C"
)-(34 AND B$="Q")-(33 AND
B$="W")-(32 AND B$="EM)+(
1 AND B$="D")-(1 AND B$="
A")

290 IF B$="S" THEN INPUT A$
300 GOTO 240

The complex looking line 280 (be careful to input it correctly) uses the

same logic as was mentioned with the “Sketch” program. If you

inspect it, after we’ve dealt with logic properly, you will see that each

key that is pressed gives a different value. The equivalent lines without

this technique would be:

280 IF B$="Z" THEN LET T^T+32
281 IF B$="X" THEN LET T<‘+33
282 IF B$="C" THEN LET T^T+34
283 IF B$="Q" THEN LET T^T-34
284 IF B$="W" THEN LET T=T-33
285 IF B$="E" THEN LET T=T-32
286 IF B$="D" THEN LET T^T+1
287 IF B$="A" THEN LET T^T-1

253

If you look at the diagram above and the numbering of the display file,

you will see how it works. — 1 or +1 move the position along a line,

- 34 moves it up one line and to the left etc. All this numbering is

within the display file. Line 240 PEEKs the D-FILE memory

locations, adds the display file position number and POKEs into the

result (a memory address in the display file) the character code for A$.

Notice the speed of this program. This gives us one reason to use

PEEK and POKE: to provide speed of display.

Notice the warning about the edges of the screen in the program

listing. When you have decided you have played with the program

enough, try going off the edge of the screen. The results will not harm

the ZX81, but you will probably have to switch the power off to reset

the computer. All manipulations of the display file must be done with

great care so as not to interfere with the NEWLINE (ENTER)

characters marking the end of each line. If these are altered the

computer cannot keep track of where everything should be, the display

will go crazy and the program will crash. Be warned! (And be careful in

your programming!)
It is possible to increase the screen size of the display to give the

capability to PRINT or PRINT AT on the bottom lines of the screen.

The system variable (DF-SZ) at memory location 16418 holds the

number of lines in the bottom half of the screen, and is normally set at

2. If we use POKE 16418,0, the bottom two lines can be used to

PRINT AT. Try this,program.

10 POKE 16418,0

20 FOR L = 0 TO 23

30 PRINT “LINE NUMBER” ;L

40 NEXT L

50 FOR X = 1 TO 300

60 NEXT X

Notice that, after the delay caused by the FOR.. .NEXT loop, the 0/60

message appears on the bottom line as usual, and that the next

command from the keyboard clears the bottom two lines. This is

because DF-SZ returns to its normal value on completion of a

program. If we use COPY it will also not print the bottom two lines - it

is only set for a normal screen size of 22 lines.

We may also restrict the screen size. Key in this program:

10 POKE 16418,20
20 PRINT "TOP LINE"
30 PRINT "SECOND LINE"
40 PAUSE 150
50 PRINT "NOW SCROLL"
60 FOR X=1 TO 4
70 SCROLL
80 PRINT "SCROLLED ";X
90 NEXT X

The SCROLL instruction now operates from the bottom line of a

screen which is only 4 lines deep. This can be used to clear just the top

part of the screen, leaving the rest undisturbed.

Try this next program, which uses both these techniques together.

(You don’t need to input the text in lines 70, 90 and 110. Just PRINT

1, 2 and 3 instead).

10 POKE 16418,0
20 FOR L=0 TO 23
30 PRINT "LINE NUMBER ";L
40 NEXT L
50 POKE 16418,21
60 SCROLL
70 PRINT "THESE LINES"
80 SCROLL
90 PRINT "NOW CLEARED AND "

100 SCROLL
110 PRINT "REST OF SCREEN LEFT

AS IS"
120 FOR X=1 TO 300

NEXT X

If entered as above, the top portion of the screen would look like this:

THESE LINES NOW

CLEARED AND REST OF

SCREEN LEFT AS IS

LINE NUMBER 3

LINE NUMBER 4

LINE NUMBER 5

LINE NUMBER 6

Unfortunately, we cannot choose a screen section in the middle of the

screen (e.g. lines 6, 7 and 8) to do this with, and must use PRINT AT

“(32 spaces)” with the lines we want to clear, or overprint directly, or

POKE spaces into the relevant positions, as in this program:

10 FOR F= 1 TO 9
20 PRINT "LINE NUMBER ";F?"

(16 SPACES) END"
30 NEXT F

254 255

40 PRINT " LINE NUMBER TO BE
CLEARED ?"

50 INPUT LINE
60 LET DFILE=PEEK 16396+256*PE

EK 16397
70 FOR X=1 TO 32
80 POKE (LINE-1) *33-R)F I LE-W(,0
90 NEXT X

Note that if we put:

70 FOR X - 32 TO 1 STEP - 1

we get a reverse line clearance (right to left), and

70 FOR X = 32 TO 30 STEP - 1

clears END, but leaves the rest of the line.

Another useful system variable concerned with the ZX81 display file

is the DF-CC address, locations 16398 and 16399. This holds the

address of the current print position in the display file. If this address is

found by using PEEK 16398 + 256* PEEK 16399 then it can in turn be

PEEKed, and will give the code of the character present at the current

print position. Note that the current print position is the next position to

be printed. A line like

10 PRINT TAB 8; “A”

leaves the current print position set at the start of the next line of the

display, and

10 PRINT TAB 8;“A”;

gives as the current print position the next position after the A. To

illustrate, here is a variation on the basic screen movement program we

derived from SKETCH which uses the DF-CC variable.

10 LET X=10
20 LET Y=1 0
30 PRINT AT Y, X;
40 LET D=PEEK 16398+256*PEEK 16399
50 PRINT "*"
60 LET X=X-(INKEY$="5" AND X>0)

+ (INKEY$=M8" AND X<31)
70 LET Y=Y-(INKEY$ = ‘,7” AND Y>0)

+ (INKE Y$ = " 6** AND Y<21)
80 POKE D, 0
90 GOTO 30

Instead of setting two variables as equal to X and Y before their values

are altered (before line 50) in order to identify where to print the space

which blanks the we use variable D to store the location of the

print position (line 40) and then POKE a 0 (space) into it to overprint

(line 80).

Notice lines 30 and 40. We must set the PRINT AT position in line

30, then PEEK the DF-CC addresses, then PRINT the

The ASTEROIDS program in the program library uses the

technique of PEEKing the next PRINT position to determine whether

a black square occupies this position. The relevant lines are

130 PRINT AT 5,C;

140 IF PEEK (PEEK 16398 + 256*PEEK

16399) = 128 THEN GOTO 250
150 PRINT “*”

Look up the program and work out how these lines relate to the rest of

the program. If you Find line 140 confusing, remember that the ZX81

evaluates expressions in brackets first. It gets the value stored in the

16398/9 addresses, which returns the address of the PRINT position
then PEEKs this address.

We will now deal with the Spectrum display file, which does not

have the straightforward structure of that of the ZX81, and to which

PEEK and POKE techniques have little application.

SPECTRUM DISPLAY FILE

The Spectrum display file is organised in a very different way to that of

the ZX81. This is a consequence of the high-resolution screen display

on the Spectrum (256 * 176 points are plotable), compared to the

‘chunky’ graphics of the ZX81, with only 64 * 44 plot squares. The

pattern of squares in any character cell on the ZX81 can be defined as a

character code. On the Spectrum each individual point of the 8 by 8

grid of a character cell must be individually specified.

The Spectrum display file is fixed in memory, and does not vary its

location. There is no need to PEEK a system variable to find its

position, as the start address is always 16384, and it is a fixed length of

6144 bytes, occupying the memory addresses up to 22527.

The complex method of organisation means that it is not possible (as

it is with the ZX81 and other computers), to POKE character codes to

the screen and have the character specified by that code appear.

Similarly, we cannot PEEK the screen to find out what character, if

any, occupies a given location. Both these operations are theoretically

possible, with much calculation, but not practicable. However, the

speed of the Spectrum’s operations takes away much of the advantage

of using PEEK and POKE on the ZX81, and we can use PRINT AT

instructions to place characters on the screen, and two special

Spectrum functions for finding out what is on the screen. Before

introducing these instructions, here is a description of the way the

Spectrum display file is organised:

Each character cell has an 8 by 8 dot matrix of points, which may be

set’ (blacked or inked in) or not. These patterns of dots make up the

256 257

characters. We’ll treat this in more detail later. For plotting, each point

must be specified individually, and this means that the characters

available in the character set do not cover the whole set of possibilities

for each cell. To cope with this, the Spectrum stores each pattern of

points along a 32 character cell line on the screen in a sequence of

bytes. However, these are not stored in sequence down the screen. The

top point sequence of each of the first eight rows of characters (lines)

are stored one after the other. The second line of points in each of these

8 lines of characters is then stored, and so on until the first eight lines of

the screen display have been defined. The next eight lines on the screen

are then stored in the same way, followed by the bottom eight lines of

the 24 line screen.
To make this clearer, key in the following program and run it:

10 FOR A == 16384 TO 22527

20 POKE A, 85

30 NEXT A

This puts into each byte the binary form of 85 (01010101), giving

alternate plotted and unplotted (‘set’ and ‘unset’) points. You will see

that the top line of points for each of the top eight lines on the screen

appears, in sequence top to bottom, then the second line of points for

each of these eight PRINT lines, and so on. When this sequence has

finished, it repeats for the next block of eight lines, and then again for

the bottom eight.

You should now see why it is not easy to define a particular sequence

of POKEs to the display file to get a character on screen! This is best

done using PRINT AT on the Spectrum in all cases. Pixels can also be

plotted, of course, and in Section W the user-defined graphics available

on the Spectrum are dealt with, which enables any character cell

pattern of 8*8 plot points to be defined and treated as a character which

can be placed on the screen with a PRINT AT instruction.

To find out what is on the screen at a particular place we use

SCREENS (instead of PEEKing the display file) on the Spectrum.

SCREENS

SCREENS is a Spectrum specific function. It returns the

single-character string of the character printed at the specified

line and column co-ordinates. It has the form:

SCREENS (L,C)

PRINT SCREENS (2, 6) returns the character printed at Line

2, Column 6 on the screen. The brackets cannot be omitted.

SCREENS will return the true video form of any inverse

character. It does not recognise either the true video or

inverse video forms of the Graphics characters.

Note the restriction on what SCREENS will recognise. The chunky

graphics characters on keys 1 to 8 are not recognised. An empty string is

returned. Run the following program to see SCREENS in action. After

you’ve tried other characters, try the graphics characters and inverse

video. Input PRINT LEN SCREEN$(10,10) as a direct command to

see that the null string (no characters) is returned.

10 INPUT A$

20 PRINT AT 10, 10; A$

30 PRINT SCREENS (10,10)

There is another Spectrum specific instruction that can be used to find

out what is currently on the screen. This is POINT.

POINT

POINT returns 1 if a specified PLOT pixel is inked in (‘set’),

0 if it is not. It has the form

POINT (X,Y)

where X and Y are the PLOT screen co-ordinates df the point

to be checked.

To see the action of POINT to check if a plot pixel has been inked in,

key in the following:

10 PLOT 128,88

20 PRINT POINT (128,88)

30 PRINT POINT (128,89)

POINT returns 1 for line 20 (pixel plotted), and 0 for line 30 (pixel not

plotted, or ‘unset’). Notice that the brackets must be placed around the

X and Y expressions. Both POINT and SCREENS will, of course,

work with calculated values. POINT can be used to give information

about inverse characters that SCREENS will not provide. We can

illustrate this simply. Key in this program:

10 PRINT “H”

20 PRINT POINT (0,175)

30 PRINT AT 10,10;“B”

40 PLOT OVER 1 ;84,90

50 PRINT POINT (84,90)

60 PRINT POINT (85,90)

Line 20 checks the upper left corner pixel of the character cell with the

exponentiation sign printed in inverse video. This returns 1, since the

pixel is set. Line 30 prints an inverse square (CAPS SHIFTed graphic

258 259

8), which SCREENS will not recognise. Line 40 unplots 1 pixel, using

the OVER 1 statement, and line 50 checks this plot point, returning 0,

since it is unplotted, and line 60 checks roughly the centre point of the

black square, which returns 1. This offers us a way of checking inverse

characters. You must, of course, make the correct calculations for the

transfer from the PRINT to PLOT screens.

You should notice two points for future use, after Section W has

introduced the other Spectrum functions not dealt with in the main

body of the text. One is that we referred to POINT returning 1 if the

pixel was set or inked in, and when you start using colour, you should

remember that POINT checks for the currently specified INK colour.

For our purposes, this is black. The other is that the colour attributes

that refer to a character cell when colour is used can be another source

of information about the screen display. (This uses the ATTR

function. See Unit W3.)

260

SECTION R: LOGICAL OPERATIONS

Rl: Logic Values and Numeric Values

When using the logical capability of Sinclair BASIC we must

distinguish between logical values and the numeric values produced by

logical evaluation. We have touched upon this earlier in the book, but

deferred a full explanation until now.

LOGICAL VALUE is the value of an expression using the criteria:

any non-zero value of the expression = “TRUE”

a zero value of the expression - “FALSE”

When an expression is logically evaluated it is assigned one of two

numeric values:

“TRUE” 1

“FALSE” 0

R2: Boolean Operators: The AND Operator

AND A

Examples 100 IF (A = 10) AND (B<>3) THEN GOTO 60

200 PRINT (A AND B)

The AND operator (symbol A) forms a logical conjunction between

two expressions involving conditional operators.

If both expressions are “TRUE” the conjunction is “TRUE”.

If one or both are “FALSE” the conjunction is “FALSE”.

The numeric value of “TRUE” is 1.

The numeric value of “FALSE” is 0.

All non-zero values are “TRUE”.

In line 100, if the relation A = 10 is “TRUE” and the relation B<>3

is “TRUE” then control will pass to line 60. If either or both of the

relations is “FALSE” then control passes to the next line.

In line 200 the computer will not print A + B; It will print the value of

A or 0 depending on the values of A and B.

Remember. All non-zero values are “TRUE”.

So if

A = 15 and B = 6

A = “TRUE” B - “TRUE”

So the relation (A AND B) is (“TRUE” AND “TRUE”).

So the result is logically “TRUE”.

15 is printed.

If A = 16 (“TRUE”) and B = 0 (zero value - logically

“FALSE”).

Then (A AND B) is (“TRUE” AND “FALSE”) = “FALSE” = 0.

So 0 is printed.

We will explain this in more detail later.

261

Truth Table for AND

A B A AND B

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

A and B are conditional expressions.

R3: The OR Operator

OR V

Examples 100 IF (A>1) OR (B = 0) THEN STOP

200 PRINT (C OR D)

The Boolean operator OR (symbol V) forms the logical disjunction of

two expressions involving conditional operations.

If either or both of the expressions is “TRUE” the OR disjunction is
“TRUE”.

If both expressions are “FALSE” the OR disjunction is “FALSE”.

In line 100 if either of the expressions (AM) and (B = 0) are

“TRUE” the program will STOP.

If both are “FALSE” control passes to the next line.

In line 200 if G - 10 * “TRUE” and D = 0 = “FALSE”

C OR D - “TRUE” OR “FALSE” = “TRUE”

10, the value of C is printed.

If C = 0 = “FALSE” and D = 0 = “FALSE”

C OR D = “FALSE” OR “FALSE” = “FALSE”
So 0 is printed.

Truth Table for OR

A B A ORB

TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

A and B are conditional expressions.

R4: The NOT Operator

NOT n

Examples 20 IF NOT A THEN STOP

30 IF NOT (A = B) THEN STOP

100 PRINT NOT A

NOT (symbol ~~|) logically evaluates the complement (reverse) of a

given expression.

In line 20, if A-10 then A = “TRUE” and NOT A - NOT

“TRUE” = “FALSE”.

So in line 20 if A is 10, NOT A is “FALSE” and control passes to

the next line.

If A = 0 (“FALSE”) then NOT A = NOT “FALSE” = “TRUE”

and the program stops.

In line 30 if(A-B) is “FALSE”, NOT (A = B) = NOT “FALSE”

= “TRUE”, so program stops.

In line 100 if A = 0 = “FALSE” then NOT A = “TRUE” = 1

So 1 is printed.

If A = 29 then A is “TRUE” and NOT A - “FALSE”, and 0 is

printed.

Truth table for NOT

A NOT A

TRUE

FALSE

FALSE

TRUE

A is a conditional expression.

R5: Conditional Operators

There are two ways to use conditional operators in logical evaluations.

1. To check the numeric value of an expression

Examples 100 IF A = 3 THEN GOTO 60

200 IF BOC THEN STOP

The numeric value produced by the logical operation is not important.

We are concerned only with the truth or falsity of the condition

indicated in the IF...THEN statement, which determines whether the

instruction is executed. When the specified condition is present

(“TRUE”), the statement after THEN will be carried out.

2. To check on the numeric value produced by logically evaluating an

expression

In this case we want the numeric values, where “TRUE” = 1 and

“FALSE” = 0

Examples 200 PRINT A<B

300 PRINT A = 3

The PRINT statement used as above will give the numeric values

produced by logical evaluation.

Line 200 is evaluated as a logical expression, so that if it is TRUE

262 263

that A is less than B, 1 will be printed, and if A is equal to or bigger

than B, the expression is false and 0 will be printed.

Line 300 is interpreted by the BASIC as: “Print 1 if A = 3, 0 if A

does not equal 3.”

The numeric value of the logical evaluation is distinct from the

logical value of the expression.

R6: Logic Operations on Conditional Expressions

IF (CONDITION)^0 (CONDITION) THEN...

IF [not] (CONDITION) THEN...
The effect of the logical operators AND, OR and NOT on
conditions which are TRUE or FALSE gives a result which is
TRUE or FALSE and on which the IF...THEN instruction
acts accordingly.

EXAMPLES:

100 IF(A>10) AND (B = 0) THEN GOTO 20

200 IF (A = 0) OR (B = 0) THEN STOP

300 IF NOT (A = B) THEN PRINT “AOB”

These all mean:

IF [combined result is TRUE] THEN (do it)

IF [combined result is FALSE] go to the next line of the program.

Using logical operations is a way of combining conditional operators in a

statement. For example:

IF [(condition 1) AND (condition 2) AND (condition 3)]

evaluates as TRUE or FALSE] THEN...act accordingly.

60 IF ((A>B) AND (C>A) AND (D>C)) THEN STOP

AND

IF (CONDITION 1) AND (CONDITION 2) THEN (RESULT)

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

EXAMPLE:

Condition 1 - My age is > 12 years

Condition 2 - My age is < 20 years

Result - I am a teenager.

IF (my age >12 years) AND (my age < 20 years) THEN (I am a

teenager).

Program

10 PRINT “INPUT AGE”

20 INPUT A

264

30 IF (A>12) AND (A<20) THEN GOTO 60

40 PRINT “ YOU ARE NOT A TEENAGER ’

50 STOP

60 PRINT “YOU ARE A TEENAGER”

IF (CONDITION 1) OR (CONDITION 2) THEN (RESULT)
TRUE TRUE TRUE
TRUE FALSE TRUE
FALSE TRUE TRUE
FALSE FALSE FALSE

EXAMPLE:

Condition 1 - I earn wages

Condition 2-1 get pocket money

Result - I have money

IF (I earn wages) OR (I get pocket money) THEN (I have money).

Program

10 PRINT “INPUT AMOUNT OF WAGES AND POCKET

MONEY YOU GET”

20 INPUT W

30 INPUT P

40 IF (W>0) OR (P>0) THEN GOTO 70

50 PRINT “YOU HAVE NO MONEY”

60 STOP

70 PRINT “YOU HAVE”;W + P;“POUNDS”

NOT

IF [NOT (CONDITION)] THEN (RESULT)

TRUE FALSE

FALSE TRUE

EXAMPLE:

CONDITION - I have money

RESULT - I do not have money

IF [NOT (I have money)] THEN (I don’t have money)

Program

5 PRINT “ARE YOU A LIAR?”

10 PRINT “INPUT AMOUNT OF MONEY”

20 INPUT M

30 IF NOT (M>0) THEN GOTO 60

40 PRINT ‘‘ APPARENTLY YOU DO NOT HAVE MONEY’ ’

50 STOP

60 PRINT “YOU DO HAVE MONEY REALLY ?”

265

R7: Multiple Logic on Conditions

Multiple logical operations on conditions are often useful.

They take the form:

IF [(Cl) [£rD] (C2)] [q^D] [(C3) [^D] (C4)] THEN...

Where Cl = Condition 1

C2 = Condition 2

C3 = Condition 3

C4 = Condition 4

e.g. IF [(Cl AND C2) OR (C3 AND C4)] THEN...

The above statement means that:

IF conditions 1 AND 2 are obeyed

OR conditions 3 AND 4 are obeyed

then the combined expression is TRUE, and the instruction

will be executed, i.e. either pair of conditions being both

TRUE will give the result.

IF [(Cl AND C2) AND (C3 AND C4)] THEN

In this statement all four conditions must be true to give the

result.

What do the following imply?

IF [(Cl OR C2) AND (C3 OR C4)] THEN...

IF [(Cl OR C2) OR (C3 OR C4)] THEN...

Notice the importance of brackets in the statements.

Their placing gives a clear logical meaning to an expression. Any

bracketed expression will be evaluated first. The result (“TRUE” or

“FALSE”) obtained from the bracketed expression will be used in

evaluating the whole expression.

A practical example of multiple logical operations on conditions

would be obtaining a loan. The relevant conditions could be:

Cl = Husband is over 21 years old

C2 = Husband's salary is over £5,000 per year

C3 = Wife is over 21 years old

C4 = Wife's salary is over £5,000 per year.

We can write a statement which indicates whether the bank will grant

the family a loan to buy a car:

IF [(Cl AND G2) OR (C3 AND C4)] THEN loan granted.

Exercises

1. Key in and run the program which illustrates this:

10 PRINT "INPUT AGE OP HUSBAND"
20 INPUT HA
30 PRINT "INPUT AGE OF WIFE"
40 INPUT WA
50 PRINT "INPUT P. A. INCOME OF HUSBAND"
60 INPUT IH

266

70 PRINT "INPUT P« A. INCOME OF WIFE"
80 INPUT IW
90 IF (HA>21 AND IH>= 5000) OR

(WA>21 AND IW>= 5000) THEN GOTO 120
100 PRINT "NOT ELIGIBLE FOR LOAN"
110 STOP
120 PRINT "LOAN AVAILABLE"

2. Write a program which inputs four numbers and outputs a

message if any of them are zero.

R8: Logical Operations on Numbers

The logical operations AND, OR, NOT when applied to numbers

return a number as the result. The rules for the operations on two

numbers X and Y are given in the following truth tables. Non-zero

values may be either positive or negative.

AND

X Y X AND Y

X <>0 X

X 0 0

i.e. X AND Y returns X if Y is non-zero

0 if Y is zero.

X Y X OR Y

X <>0 1

X 0 X

i.e. X OR Y returns 1 if Y is non-zero

X if Y is zero.

NOT

Y NOTY

<>0 0

0 1

i.e. NOT Y returns 0 if Y is non-zero

1 if Y is zero

EXAMPLES:

7 AND 3 - 7

7 AND 0 = 0

5 OR 2 =1

267

R9: Priority 5 OR 0 =5

NOT 8 = 0
NOT 0 = 1 OPERATOR PRIORITY

Exercises

1 Key in the examples given above as direct commands, and verify

the rules of logical operations on numbers.

2 Key in and run the following programs:

LOGIC 1:

5 REM "LOGIC 1"
10 INPUT A
20 INPUT B
30 PRINT "A="; A,"B=";B
40 PRINT "A AND B=";A AND B
50 PRINT "A OR B=";A OR B
60 PRINT "NOT B =";NOT B
70 GOTO 10

Results:

A = 77 B = 45

A AND B = 77

A OR B = 1

NOT B = 0

A = 77 B = 0

A AND B = 0

A OR B = 77

NOT B =1

LOGIC 2:

5 REM "LOGIC 2"
10 REM **THIS PROGRAM TESTS THE LOGICAL OR

OPERATOR ACTING ON A NUMBER AND A
CONDITION TOGETHER**

30 PRINT "Y=10*(7 OR A=3)"
35 PRINT
40 PRINT "INPUT A VALUE FOR A PLEASE"
45 PRINT
50 INPUT A
55 LET Y=10*(7 OR A=3)
60 PRINT "IF A=";A,"THEN Y=";Y
65 PRINT
70 PRINT "WHAT ARE YOUR CONCLUSIONS??"
75 PRINT
80 PRINT
90 GOTO 30

LOGIC 3:

= ,<>,<,< = ,>,> = 5

NOT 4

AND 3

OR 2

Priority rules are strictly obeyed. If brackets are not used properly

when logical operators act on conditions the desired result will not be

achieved. For example:

NOT (“FALSE” AND “FALSE”)

gives NOT “FALSE”

= “TRUE”

BUT

NOT “FALSE” AND “FALSE”

gives “TRUE” AND “FALSE”

=“FALSE”

Completely the opposite!

Exercises

1 Key and and run this program, which checks priority.

10 LET A = 1

20 LET B = 1

30 PRINT NOT (A = 0 AND B = 0)

40 PRINT NOT A = 0 AND B = 0

2 What result would the following give?

PRINT 5 AND 3 OR 0 OR NOT 7 AND 4

3 Key in and run program “LOGIC 4”, which tests priorities:

5 REM "LOGIC 4"
7 REM **THIS PROGRAM TESTS MU

LTIPLE LOGIC OPERATORS**
10 LET A=5 AND 3 OR 0 OR NOT 7

AND 4
20 PRINT "5 AND 3 OR 0 OR NOT

7 AND 4="; A
30 PRINT
40 PRINT
50 LET B=((4 AND 2) AND NOT (0

AND 3)) OR ((3 OR 0) AND (4
OR 0))

60 PRINT "((4 AND 2) AND NOT (
0 AND 3)) OR ((3 OR 0) AND
(4 OR 0))="}B

5 REM "LOGIC 3"
10 INPUT A
20 PRINT 77+<10 AND A=3>
30 GOTO 10

268
269

R10: Logical Operations with Strings

1 Logical operations using AND, OR and NOT may be

performed on conditional string expressions. For

ei@miPFe(A$ = B$) AND (C$ = D$) OR (D$ = E$) THEN...

50 PRINT NOT A$ = B$.
2 The AND operator may be used directly between a stung

and a number. For example:
PRINT (A$ AND N)

The result of this operation is given by the truth table.

A$ N A$ AND N

A$ <>0 A$

A$ 0
a >>

i.e. A$ AND N returns A$ if N is non-zero

and a null string if N is zero.

Two strings cannot be directly operated on by any logica

operator because strings cannot have logical values. For

example. ^ AND B$ A$ OR B$, NOT A$

are meaningless expressions.

Exercises

1

2

3

Key in PRINT NOT “A” = “B”

and PRINT “A” = “B” AND “B” =

to test the rules of logical string

“C” OR “G” = “E”

operation. Try other

combinations. .e
Write a program which requests a name and then checks to see it

it corresponds to several strings stored in the program, printing

out a message to say if the word was found.

Write a program to test the truth table for A$ AND N.

Rll: Logical Operations Between Strings and Conditions

Only the AND operator may be used.

The rule is the same as for strings and numbers.

A$ AND C gives AS if C is “TRUE” ^

A$ AND C gives a null string if C is “FALSE”

C can be either a string condition or a numeric condition.

270

EXAMPLES:

PRINT “A” AND 3 = 3 gives A

PRINT “A” AND 3 = 4 gives the empty (null) string

PRINT “A” AND “B” = “B” gives A

PRINT “A” AND “B” = “C” gives the null string

Exercises

1 Key in and run LOGIC 5, which illustrates string and condition

use.

5 REM "LOGIC 5"
10 LET X$="AB"
20 LET Y$ = "AC"
30 PRINT (2 AND X$>Y$)
40 PRINT (7 AND X$<Y$)
50 PRINT (5 AND X$=Y$)
52 PRINT
54 PRINT
60 LET P$="l"
70 LET Q$="2"
80 PRINT (33 AND P$>Q$)
90 PRINT (66 AND P$<Q$)

100 PRINT (99 AND P$=Q$)
102 PRINT
110 PRINT "SO""AB""<""AC"""
112 PRINT
120 PRINT "AND ""1""<""2"""

Results:

0
7

0

0
66
0

SO “AB”<“AC”

AND “1”<“2”

2 Alter the values of X$,Y$,P$ and Q$ and run the program again

each time.

3 Alter the program to allow various strings and numbers to be

input, and print out the relationships.

R12: Logical Operations Between Numbers and Conditions

N AND C

N OR C

271

Where N is a number

and C is a condition:

either a string condition e.g. A$ = “A”

or a numeric condition e.g. B = 7

N C N AND C NORC

N TRUE N 1

N FALSE © N

These are the same rules as with logical operations between

numbers.
N AND C gives N if C is “TRUE”

N AND C gives 0 if C is “FALSE”

N OR C gives 1 if C is “TRUE”

N OR C gives N if C is “FALSE”

Exercises

1 Analyse, key in and RUN the following statements, and confirm

the rules.
PRINT 7 AND “A” = “A”

PRINT 0 AND “A” = “A”

PRINT 7 AND “A” - “B”

PRINT 0 AND “A” - “B”

PRINT 7 OR “A” - “A”

PRINT 0 OR “A” - “A”

PRINT 7 OR “A” - “B”

PRINT 0 OR “A” - “B”

2 Key in and run this program.

Input B as 3 and 5.

10 INPUT B

20 PRINT 7 AND B = 3

30 PRINT 7 OR B - 3

40 GOTO 10

R13: Applications of Logical Operators

1 Simple conditional tests

2 Multiple conditional tests

3 Multibranch GOTO and GOSUB

4 Finding maximum and minimum values

5 Checking characters input

6 Checking input values

7 Testing for zero

8 Default values

1 Simple Conditional Tests

IF (Logical Operation) THEN (statement).

If the logical operation is TRUE the statement is executed.

AND, OR and NOT operators are used.

2 Multiple Conditional Tests

IF [(Condition 1) AND (Condition 2) OR (Condition 3)] THEN

(statement).

If the multiple logical operations are TRUE the statement is

executed.

AND, OR and NOT are used.

3 Multibranch GOTO Routines

Using this technique, control may be transferred to any of a

number of statement lines.

Here we use the AND routine, whose default value is zero:

GOTO (100 AND Cl) + (200 AND C2) + (300 AND C3)

Cl, C2 and C3 are three conditions.

Control is transferred to line 100 if Cl is TRUE

200 if C2 is TRUE

300 if C3 is TRUE.

Similarly:

GOSUB (100 AND Cl) + (200 AND C2)

Control is transferred to:

the subroutine at line 100 if Cl is TRUE

200 if C2 is TRUE

300 if Cl and C2 are TRUE

and the next line, if neither are true.

Key in and run this program:

10 INPUT A
20 INPUT B
30 GOTO (100 AND A=0) + {200 A

ND B=0)
40 PRINT A-H3
50 STOP

100 PRINT "A=0.INPUr A AND B
AGAIN"

110 GOTO 10
200 PRINT "B=0.INPUT B AGAIN"
210 GOTO 20
300 PRINT "BOTH ZERO.INPUT A

AND B AGAIN"
310 GOTO 10

4 Finding Maxima and Minima Values

We use the AND operator to find the maxima and minima of

two numbers X and Y.

10 INPUT X
20 INPUT Y
30 PRINT "MAX IS";(X AND X>=Y)

+ (Y AND Y>X)
40 PRINT "MIN IS";(X AND X<=Y)

+ <Y AND Y<X)

272
273

or we could program this as

30 IF X >= Y THEN GOTO 60
40 PRINT MMAX="?YU MIN=M;X
50 STOP
60 PRINT "MAX="? X? M MIN="?Y

Which do you think is the best method?

Finding the largest number in a list is another application. We

have a list of numbers A(l) to A(N). We can compare the first

two, A(l) and A(2), and put the largest of these into a variable L

by the statement:

LET L = (A(l)AND A(l)> = A(2)) + (A(2)AND A(2)>A(1))

We compare this value of L with the next number A(3) and

make L take the larger value of the two and so on through the

list.
LET L = (L AND L> - A(3)) + (A(3) AND A(3)>L)

The program asks us to input how many numbers will be in our

list (N). We then input the numbers A(I). These are printed on

the screen together with the largest value. Two loops are used,

the first to input the numbers and the second to perform the

comparisons.

10 REM "LARGEST"
20 PRINT "INPUT HOW MANY NUMBE

RS"
30 INPUT N
40 PRINT N
50 DIM A(N)
60 FOR I = 1 TO N
70 INPUT A(I)
80 PRINT A(I);" "?
90 NEXT I

100 LET L = (A(1)AND A(1)>=A(2)
)+(A(2)AND A(2)> A(l))

110 FOR I = 3 TO N
120 LET L = (L AND L>=A(I)) 4*

(A(I)AND A(I)> L)
130 NEXT I
140 PRINT "LARGEST NUMBER IS "

?L

Key in and run the program.

This is an appropriate place to emphasise the care needed in

programming logical operations. There are two things that

cause problems. The first is the setting of conditions, and the

second is the grouping of these conditions in a logical sequence

that will produce the required result. Any line the computer does

not reject because of a syntax error will produce a result. Care is

needed to get the right result.

This can be illustrated by the question of deriving the larger of

two numbers, using AND. The problems of non-rigorous use of

the logical and relational operators can be illustrated by

considering the following problem. We have two numbers X

and Y. We know that AND can be used so that if we code a

program line as LET M = X AND X>Y it will return the value

of X if the condition is true. We want to use this to get the value

of a maximum. The line above will produce zero if the condition

is not true. So we can combine two such tests in one line to get

our maximum. We key in this sort of program (do it):

10 INPUT X

20 INPUT Y

30 LET MAX - X AND X>Y + Y AND Y>X

40 PRINT MAX

Input some numbers and check the results.

Something is wrong. Looking at the program, we see we need

some brackets. As it stands, line 30 is actually a sequence of

three conditions, joined by two AND operators. It reads ‘give

MAX the logical value of (X) AND (X>Y + Y) AND (Y>X)\

Since all three conditions have to be true for the whole

expression to be true, and since (X>Y + Y) and (Y>X) cannot

both be true, we get zero.

We make the expression more sensible, we hope, by changing

line 30 to read: LET MAX = X AND (X>Y) + Y AND (Y>X).

Key in this as a new line. Now try some inputs.

If X is smaller than Y we get the value of X printed, and if X

is greater than Y we get zero. We haven’t got the brackets right.

There are still three conditions joined by two ANDs. We’ve

changed the meaning, but not to what we actually want. If X

and Y are non-zero, (X) is true, ((X>Y) + Y) is zero for smaller

X, one (TRUE) for larger X, added to Y. This is non-zero, so is

TRUE. If the last condition is TRUE (i.e. Y>X) then the

combined expressions give X as the result. If it’s FALSE then

the whole expression is FALSE and prints 0. Now we see what’s

wrong, we can put some more brackets in.

Edit line 30 to read: LET MAX - (X AND(X>Y)) + (Y AND

(Y>X)).

Now try some inputs. The greater of the two numbers is

returned, which is what we wanted. If we now look at our

working line, we can see (or should) that there are brackets we

don’t need, although they don’t do any harm. Edit line 30 to

read LET MAX = (X AND X>Y) + (Y AND Y>X) and check

the greater value is still returned. So we’re finished - or are we?

Only if you didn’t consider what happens if the numbers X and

Y are equal. Input the two numbers as the same value and see

what result you get. Both expressions are FALSE if the numbers

are equal, so we get zero printed.

The line should read: 30 LET MAX = (X AND X> - Y) + (Y

AND Y>X). Just in case you’re not convinced of the problems

you can get into if you are not careful, enter the line as above

and check that it works. Then edit it to read: LET MAX = (X

274 275

AND X> = Y) + (Y AND Y> = X) and input values with X>Y,

Y>X and X = Y.
This sort of problem is only avoided by carefully thinking out

the result required in the case of all inputs, and checking the

logic before you code it in. If there are these possible problems in

a four-line program, think of the potential pitfalls in a complex

one!

Checking Characters Input

Control in a program can be achieved using the INKEY$

statement and checking which character is keyed in using

combined conditional logic operations. We have seen this used

in programs earlier in the text.

The following program enables the numbers on the keyboard

to be used as a joystick, allowing you to move a dot in any

direction on the screen.

To move the dot in the following compass directions press the

desired key.

■5 REM "JOYSTICK"
10 REM ^SPECTRUM:X-l20»Y=80
20 LET X=30
30 LET Y=20
40 PLOT X>Y
50 IF INKEY$ THEN GOTO 50
60 LET A$= INKEY$
65 REM ^SPECTRUMs

70 OVER is PLOT X*Y
70 UNPLOT X ? Y
75 REM ^SPECTRUM: X<255
80 IF X<63 AND CA$="8" OR A$="

1" OR A$="2"> THEN LET X=XH
90 IF X>0 AND <A$="4" OR A$="3

" OR A$="5") THEN LET X=X-i
95 REM ^SPECTRUM:Y<175

100 IF Y<43 AND <A$="7" OR A$="
4" OR THEN LET Y=Y+1

110 IF Y>0 AND <A$="6" OR A$="2
" OR A$="3"> THEN LET Y=Y~ 1

120 GOTO 40

276

Analyse the program.

Key it in and run it.

Change the program to move the dot in larger jumps.

Change the program to move the dot in sixteen different
directions.

6 Checking Input Values

The OR operator can be used to check that values keyed into a

program are in range. For example, we are asked to input values

for variables in the following ranges:

A range 0-9

B range 10-99

C range 100 - 999

Here is a program that checks values input:

10 INPUT A
20 IF A<0 OR A>9 THEN GOTO 100
30 INPUT B
40 IF 8<10 OR B>99 THEN GOTO 2

00
50 INPUT C
60 IF CC100 OR 0999 THEN GOTO

300
70 PRINT AT 1,1;A; AT 1,8;B;A

T 1,15;C
80 STOP

100 PRINT "INPUT A OUT OF RANGE"
110 GOTO 10

200 PRINT "INPUT B OUT OF RANGE"
210 GOTO 30
300 PRINT "INPUT C OUT OF RANGE"
310 GOTO 50

7 Testing for Zero

We can use the NOT routine to check for zeros in a list of
numbers.

NOT (N) - 0 when NO0

NOT (0) = 1

Here is a program which sets up a counter C, initialises it, and

requests numbers to be input. If a zero is input NOT 0 = 1 and

C is incremented by LET C = C + NOT (A(F)).

5 DIM A(10)
10 LET C=0
20 FOR F = 1TO10
30 INPUT A(F)
35 PRINT A(F);H
40 LET C=C+N0T (A{F))
50 NEXT F

60 PRINT "THERE ARE";C;"ZEROS"

Key in and run the program.

8 Default Values

The default value of AND is zero. AND is therefore extremely

useful in the addition of logical operations. For example:

60 GOTO (100 AND A = 0) + (200 AND A>0).

277

The default value of OR is 1. OR is thus useful in the

multiplication of logical operations.

For example, the following program asks you to input any

three digits in the range 0-9. The computer will generate three

digits at random.
You win £10, £100 or £1000 depending on how many digits

you guess correctly.

5 REM “GUESSANUM"
10 DIM ACS)
20 DIM DCS)
SO PRINT “INPUT 3 DIGITS IN TH

E RANGE 0-9 ONE AT A TIME1’
40 FOR F=1 TO 3
50 INPUT A<F>
60 PRINT A C F) J“ “i
70 LET B<F)= INT < RND *10)
SO NEXT F
90 PRINT

100 PRINT BU)!" "?BC2)JM “JBC3
>

110 LET Z=C10 OR CAC1) <> BCD)
)*C10 OR CAC2) <> BC2)))*C10 OR
(ACS) <> DCS)))
120 IF Z=1 THEN LET Z=0
130 PRINT “YOU WIN “?Z
140 INPUT A$
150 IF A$="Y" THEN GOTO 30
160 STOP

SECTION S: LISTS AND ARRAYS

SI: Dimension

The dimension statement DIM is used to reserve storage space

for a LIST or ARRAY to contain numbers. DIM A (N) sets up

an array A with space for N numbers.

A may be any single letter A to Z. The Spectrum will accept

both upper and lower case letters, but a(N) will signify the

same array as A(N).
N may be a number, a numeric variable or an expression.

A dimension statement must be declared before the array can be used.

This is usually done at the beginning of a program, unless the value of

N is to be set equal to an expression or variable which will be calculated

later in the program.

There may only be one DIM statement on a line for the ZX81.

These statements in a program:

10 DIM A(10)

20 DIM B(15)

30 DIM C(30)

will reserve storage for a list A containing 10 numbers, a list B

containing 15 numbers and a list C containing 30 numbers. The values

of each ELEMENT (number) in an array are automatically set

(initialised) as zero.

Error code 4 ('out of memory’ on the Spectrum) will be displayed if

there is no room for the array, i.e. if N is too large.

S2: Index Variable

The index variable N is used to locate a member of a list.

We use the form A(N) to locate the N?th number of a list

A(L), where 1< = N< = L.

If N = 5, then A(N) refers to A(5), the fifth number in the

list.

The program below establishes a four element list, so that:

A(l) = 1

A(2) = 4

A(3) - 9

A(4) = 16

and then prints out the second and fourth element.

10 DIM A(4)

20 FOR N = 1 TO 4

30 LET A(N) = N*N

40 NEXT N

50 PRINT ‘' SECOND ELEMENT IS A(2)

60 PRINT ‘ < FOURTH ELEMENT IS ’’; A(4)

278 279

S3: Lists

Many types of problem involve a set of values and it is convenient to

store such items in a list. The next program illustrates the idea. We

assume a list of the squares of the first 20 integers is required. It is

necessary to reserve storage for the twenty numbers (1, 4, 9 etc., up to

400) and this is done in line 20. The loop (lines 30 to 50) puts A(l) = 1,

A(2) = 4... A(20) = 400 and it is thus possible to use any item of this list

at a later date, using the index variable.

Line 60 prints out 4 16 36 and the loop (lines 80 - 100) will print out

the complete list of numbers.

10 REM "LIST"
20 DIM A(20)
30 FOR N=1 TO 20
40 LET A<N)~N*N
50 NEXT N
60 PRINT AC2)?" "fA<4)?" "

a <: 6 >
70 PRINT
80 FOR N=1 TO 20
90 PRINT A(N)

100 NEXT N

S4: Examples of Lists

We give below some example programs illustrating the use of lists.

1 Simple allocation of elements in a list. Look at the program.

What will be printed out when the program is RUN? Check by

entering and running the program.

10 HEM "LIST1"
20 DIM A(4)
30 LET A(1)=10
40 LET A(2)=50
50 LET A(3)=72
60 LET A(4)= 2 0
70 PRINT A(1)*A(3)
80 PRINT
90 PRINT A(3)-A(2)

2 Allocation of values to the elements in a list using a loop and the

INPUT statement. The value of the control variable (N) of the

loop is used to specify each element of the list in turn. Again,

work out the results of the program, then check by keying it in

and running it.

10 REM "LIST2"
20 DIM A(4)
30 FOR N=1 TO 4
40 PRINT "TYPE A(";N;")"

50 INPUT A (N)
60 NEXT N
70 PRINT A(1)*A(3)
80 PRINT
90 PRINT A(3)-A(2)

3 All lists used in a program must be dimensioned, with each

dimension statement on a separate line. Hand trace this

program and decide what the 10 elements in list B(N) are. Check

by entering and running the program.

5 REM 11 LI ST 3"
10 DIM A(20)
20 DIM B(10)
30 FOR N=1 TO 20
40 LET A(N)=N*N
50 NEXT N
60 FOR N=I TO 10
70 LET B(N)=A(2*N)-A(2*N-1)
80 NEXT N
90 FOR N =1 TO 10

100 PRINT B(N)
110 NEXT N

4 A variable may be used in a DIM statement, provided its value

is assigned before the DIM statement is reached. Enter program

“LIST4’\ Run the program for X = 20.

5 REM "LIST4"
10 INPUT X
20 DIM A<X>
30 FOR N=i TO X
40 LET A<N)= SQR N
50 PRINT ACN)
60 NEXT N

5 The program “OHMS LAW” illustrates the use of lists to store

data from a set of electrical circuit experiments. The voltmeter

and ammeter readings from each experiment are stored in the

lists A(N) and V(N) as they are input. Notice that it is essential

to dimension storage space for the derived list of results, R(N),

(line 60). The loop (lines 90 to 140) enables the readings to be

stored for use in the later loop (lines 180 to 220), which performs

the calculation and prints out the results of each experiment,

giving the current in amps, the voltage in volts, and the

resistance in ohms derived by the formula, R = V/I in line 190.

Line 170 initialises a variable T which has each resistance in

turn added to it. This enables line 250 to print the average

resistance value.

10 REM "0HMS*LAW"
20 PRINT "OHMS LAW RESULTS"
30 PRINT "UP TO 20 PAIRS OF R

EADINGS"
40 DIM A(20)
50 DIM V(20)
60 DIM R (20)

280 281

70 PRINT "TYPE NUMBER OF SETS
OF READINGS"

80 INPUT X
90 FOR N=1 TO X

100 PRINT "TYPE CURRENT IN AMPS"
110 INPUT A(N)
120 PRINT "TYPE VOLTAGE IN VOLTS"
130 INPUT V(N)
140 NEXT N
150 PRINT "AMPS";TAB 8;"VOLTS";

TAB 16; "OHMS"
160 PRINT "********************

****»

170 LET T=0
180 FOR N=1 TO X
190 LET R(N) =V(N)/A(N)
200 LET T=T+R (N)
210 PRINT A(N);TAB 8;V(N);TAB 1

6;R(N)
220 NEXT N
230 PRINT "********************

240 PRINT
250 PRINT "AVERAGE RESISTANCE "

;TA;" OHMS"

Notice that if lines 70 and 80 had come before the DIM

statements, we could use DIM A(X), etc. to set the size of the

arrays exactly, as in program LIST4 above.

6 A similar type of program is shown below. This shows image

positions (V) and magnifications (M) for a convex lens, given

the focal length of the lens (F) and the object distance (U).

5 REM "CONVEXLENS"
10 PRINT "THIS PROGRAM SHOWS THE POSITION AND

MAGNIFICATION OF THE IMAGE PRODUCED BY A
CO)VEX LENS"

20 PRINT "******************************"

30 DIM U (12)
40 DIM V(12)
50 DIM M(12)
60 PRINT "TYPE FOCAL LENGTH IN CM."
70 INPUT F
80 PRINT "TYPE OBJECT DISTANCE IN CM."
90 FOR N=1 TO 12

100 INPUT U(N)
110 LET V(N)=U(N)*F/(U(N)-F)
120 LET M(N)=V(N)/U (N)
130 NEXT N
140 PRINT "U";TAB (8);"V";TAB (22);"M"
150 FOR N=1 TO 12
160 PRINT U(N);TAB (8);V(N);TAB (22);M(N)
170 NEXT N

The screen display will look like this:

282

THIS PROGRAM SHOWS THE POSITION
AND MAGNIFICATION OF THE IMAGE
PRODUCED BY A CONVEX LENS
★*★**★★**********★★★*★★*******

u V M
10 -13,333333 -1.3333333
20 -40 -2
30 -120 “4
39.555 -3555.5056 -89.887639
40.555 2922.8829 72.072073
50 200 4
60 120 2
70 93.333333 1.3333333
80 80 1
90 72 0.8
100 66.666667 0.66666667
120 60 0.5

S5: String Arrays

The DIM statement for string arrays has the form

DIM A$ (N,L)

where N = number of strings and L = the fixed length of each

string. A may be any single letter A to Z, but must NOT be

the same as a simple string variable. Each string is set to

contain L spaces initially.

DIM A$(3,4) will reserve storage space for 3 strings

A$(1)?A$(2),A$(3), each of length 4, in the string array A$.

Each letter of each string can be accessed separately, as with a string

variable. A$(2,3) will return the third character of the string A$(2).

Substrings may also be allocated by a statement such as A$(2,l TO 2),

which will return the first and second characters of A$(2). For example,

if A$(2) = “EFGH” then:

A$(2,2 TO 4) = “FGH”

The two programs below show these operations. Key them in and run

them. Note that spaces may be included as letters, as can any other

characters useable in a string.

If we have:

20 DIM A$C3? 8)
30 LET A$<3)«MABC E* GM

then (• o ? ^ H h

and A$C3,5 TO 8)="E* G"

1) 5 REM "STRING *ARR1"
10 DIM A$(4,3)
15 PRINT "TYPE IN LETTERS THRE

E AT A TIME"
20 FOR N=1 TO 4
30 INPUT A$(N)
40 NEXT N
50 PRINT A$ (4,3); " ";A$(3,2)
70 PRINT
80 PRINT A$ (1); " ";A$(2);" "; A

$ (3)

283

2) 10 REM HSTR*ARR2"
20 DIM A$(3,4)
30 LET A $ (1) = " ABCD"
40 LET A$ (2) ~" EFGH"
50 LET A$ (3) = "IJKLH
60 PRINT'A$(2,4);" ";A$(3,2)
70 PRINT
80 PRINT A$ (2,2 TO 4)
90 PRINT

100 PRINT A$(1,3 TO 4)

86: Two Dimensional Arrays

A 2~D (two dimensional) numeric array is dimensioned by the

statement:

DIM A(R,C)

where A is any letter, R is the number of Rows and C is the

number of Columns.

All elements are set as zero.

The simple array is one-dimensional, and contains just a linear

sequence of items. Arrays can have more than one dimension:

4 6 8

10 12 14

16 18 20

22 24 26

This is a numeric array consisting of 4 rows of numbers in 3 columns.

Storage would be reserved by the statement:

10 DIM A(4,3).

In an array A(R,C) we can access any element, so that in the array

above:

A(2,l) = 10 A(3,2) = 18 etc.

An array of two (or more) dimensions is also known as a MATRIX

(plural matrices).

The following program establishes an array and prints out two

selected elements and then the complete array:

10 REM 11 ARRAY"
20 DIM AC 10?9)
30 FOR R=1 TO 10
35 FOR 0=1 TO 9
40 LET A (R ? C> =R*C
50 NEXT C
60 NEXT R
70 PRINT AC10? 6)? A<5? 3)
80 PRINT
90 FOR R=1 TO 10

100 FOR 0=1 TO 9
110 PRINT TAD 3*0?ACR?C)?
120 NEXT C
130 PRINT TAD 4?
140 NEXT R

Line 20 allocates the appropriate storage. Nested loops (line 30 ~ 60)

are used to allocate values to the elements in the array. Line 70 prints

284

out two elements in the array. Nested loops (line 90 to 140) print out

the complete array.

Why is line 130 required?

In order to keep track of the elements of an array we need to have a

system. In general it is easiest to use R to represent the Rows and C the

Columns and to always access the rows before the columns.

Note the use of the TAB function to give a clear printout.

1 2 3 4 5 6 7 8 9

2 4 6 8 10 12 14 16 18

3 6 9 12 15 18 21 24 27

4 8 12 16 20 24 28 32 36

5 10 15 20 25 30 35 40 45

etc.

String arrays can also have more than one dimension.

2“D String arrays are dimensioned by a statement of the form

DIM A$(R,C,L)

where R is the number of Rows, C is the number of Columns

and L is the length of all strings in the array.

Try this program:

10 REM "2DSTRING"
20 DIM A$(3,3, 5)
30 PRINT "TYPE WORDS 5 LETTERS

OR LESS"
40 FOR R=1 TO 3
50 FOR C=1 TO 3
60 PRINT AT 2,0;"ROW ";R;" COL ";C
65 INPUT A$(R,C)
70 NEXT C
80 NEXT R
90 FOR R=1 TO 3

100 FOR C=1 TO 3
110 PRINT AT R*4,C*8;A$(R,C)
120 NEXT C
130 NEXT R

Key this in and run it. Try some appropriate entries for the rows and

columns, as the routine in line 60 gives a cue for which entry is next.

This is a useful routine for use with multiple entry INPUT routines,

since it is very easy to forget which entry is next. One run of this

program gave a final screen display like this:

285

TYPE WORDS 5 LETTERS OR LESS

ROW 3 COL 3

START 2ND THIRD

FOUR FIVE SIXTH

SEVEN EIGHT FINAL

Note also line 110, where both control variables of the nested loops are

used to format the printout using the PRINT AT instruction.

S7: Multidimensional Arrays

Multidimensional arrays are available for both numbers and strings,

although a 3-D string array is rarely something needed in a program!

The easiest way of thinking of these arrays is as follows:

A (P, R, C) is a 3 dimensional array: page, row, column

A (B, P, R, C) is a 4 dimensional array: book, page, row, column.

A 5 dimensional array would be a library, on the basis of this analogy.

These arrays require DIM statements to reserve the necessary storage.

A simple example of a 3 dimensional array (which needs 3 nested

loops) is given below.

10 REM "3DLIST"
100 DIM A(3,2,4)
110 FOR P=1 TO 3
120 FOR R=1 TO 2
130 FOR C=1 TO 4
140 LET A(P,R,C)=P*C*R
150 NEXT C
160 NEXT R
170 NEXT P
180 PRINT A(2,1,3)
190 PRINT
200 FOR P=1 TO 3
210 FOR R=1 TO 2
220 FOR C=1 TO 4
230 PRINT A(P,R,C)
240 NEXT C
245 PRINT
250 NEXT R
255 PRINT
260 NEXT P

The similar program below, extended by a dimension, shows a 4

dimensional array printed out in a suitable form.

286

10 REM "4DARRAY"
100 DIM A(2,3,4,5)
110 FOR B=1 TO 2
120 FOR P=1 TO 3
130 FOR R=1 TO 4
140 FOR C=1 TO 5
150 LET A(B,P,R,C)=B*P*R*C
160 NEXT C
170 NEXT R
180 NEXT P
190 NEXT B

200 PRINT A(l,2,3,4);" ";A(2,2,3,3)
210 PRINT
220 FOR B =1 TO 2
230 FOR P=1 TO 3

235 PRINT "BOOK"? B;"/PAGE" ; P
240 FOR R=1 TO 4
250 FOR C=1 TO 5
260 PRINT A(B,P,R,C)
270 NEXT C
280 PRINT
290 NEXT R
300 PRINT
310 NEXT P
320 PRINT
330 NEXT 8

Here’s a 3-D string version to try. Input only two letters at a time.

Actually it doesn’t matter, the computer will ignore any characters in

excess of 2, since that is the dimensioned length.

5 REM "3D*STR*ARR"
10 DIM A$ (3,3,3,2)
20 FOI P=1 TO 3
30 FOt R=1 TO 3
40 FOR C=1 TO 3
50 INPUT A$(P,R,C)
60 NEXT C
70 NEXT R
80 NEXT P
90 FOR P=1 TO 3

100 Fee R=1 TO 3
110 FOR C=1 TO 3
120 PRINT AT R*3,(P*10-10)+C*3;

A$(P,R,C)
130 NEXT C
140 NEXT R
150 NEXT P

Work out how the PRINT AT expressions work.

S8: Use of Arrays

A simple example of the use of 2-D arrays is shown in the seat booking

program below. A small theatre consists of 10 rows of seats with 6 seats

in each row. Some seats may already be reserved. These are input

when the program is run. When a new booking is made the requested

seat, if available, is sold. If the seat is not available a seat in the same

row is offered. If no seat in that row is available the customer is asked

to choose another row.

287

The sections of the program are as follows:

1 Initialise an array to represent the 10 rows of 6 seats (line 30).

All elements in this array are 0, and represent unbooked seats.

2 Input seats already booked (lines 40 - 130).

2.1 Input row and seat number of booked seats. If input is 0 for the

row number, program goes to 2.3.

2.2 If seat already booked (array element = 1), print message to

user. Seat is booked by placing a 1 in the appropriate array

element.

2.3 Program prints prompt, then halts until C is input.

3 Customer request for seat is input (lines 165 - 240).

3.1 Row and seat required are input. If seat already booked (array

element =1), program goes to 4.

3.2 Seat is booked.

3.3 Menu is printed to enable user to choose to book another seat,

or to view seating plan.

3.4 If seat booking is requested, program returns to 3.1. If seating

plan option is chosen, program goes to 5.

4 Seat unavailable module (lines 300 - 450).

4.1 Seat unavailable message is printed, then the variable SEATS

is set at zero, and the loop checks if at least one seat is free in

this row, setting SEATS = 1 if a seat is free (Current Row R,

checked for S(R,1) to S(R,6)).

4.2 If no seats are free in this row (SEATS = 0), program passes to

line 440 and prints message, then returns to menu (3.3).

4.3 If at least one seat is free, the loop at lines 390 to 410 prints out

the numbers of the seats free, and the program returns to the

menu.

5 View Seat Plan Module (lines 500 - 600).

5.1 Nested loops are used to display seat plan, row 10 being at the

top, as 0’s and l’s.

5.2 Copy option is given, to print out seating plan.

5.3 Menu presented for end of program or return to book seats.

Program goes to 3.1, or proceeds to 6.

6 Program ends. Instructions given to restart if required without

using RUN and clearing the data stored in the array.

10 REM "THEATRE"
20 REM **INITIALISE ARRAY**

30 DIM S(10i6)
35 REM **INSERT SEATS ALREADY*

**B00KED *
40 PRINT “INPUT SEATS THAT ARE

BOOKED. 'V'INPUT 0 TO FINISH"
50 PRINT "ROW?"
60 INPUT R
70 IF R-0 THEN GOTO 130
SO PRINT "SEAT?"
90 INPUT C

100 IF S CR, C) = 1 THEN PRINT “ROW
"i R?M SEAT "?C?" ALREADY"i"BOOK

ED"
110 LET SCR,0 = 1
120 GOTO 50

130 CLS
140 PRINT "INPUT C TO PROCEED T

0 BOOKING. "
150 INPUT A$
160 CLS
165 REM **CUSTOMER REQUEST FOR*

**SEAT **
170 PRINT "TYPE ROW REQUIRED"
180 INPUT R
190 PRINT "TYPE SEAT NUMBER"
200 INPUT C
210 IF SCR, 0 = 1 THEN GOTO 300
220 LET SCR,0 = 1
230 PRINT "THIS SEAT FREE. NOW B

GOKEO. "
240 PRINT "ROW ";Rj" SEAT ";C
250 PRINT
260 PRINT "BOOK ANOTHER SEAT CS

)0R VIEW","SEATING PLAN CP)?INPU
T S OR P"

270 INPUT M

280 IF A$="S" THEN GOTO 170
290 GOTO 500

300 REM ** SEAT UNAVAILABLE **
310 PRINT "REQUESTED SEAT NOT A

VAILABLE"
320 LET SEAT3=0
330 FOR N=1 TO 6
340 IF SCR,N)=1 THEN GOTO 360
350 LET SEATS31
360 NEXT N
370 IF SEATS=0 THEN GOTO 440
380 PRINT "SEATS FREEs"?
390 FOR N=1 TO 6
400 IF SCR,N)=0 THEN PRINT N?"

ii.

410 NEXT N
420 PRINT "
430 GOTO 450

440 PRINT "NO SEATS ARE FREE IN
ROW " tR
450 GOTO 260

490 REM ** SEATING PLAN #*
500 CLS
510 FOR R=1 TO 10
520 LET X = 11 — R
530 PRINT TAB 5?"ROW "?X? TAB 1

2?

540 FOR C=1 TO 6
550 PRINT SCX»C>?
560 NEXT C
570 PRINT
580 NEXT R

288
289

590 PRINT ? ?"INPUT C TO COPY?AN
Y TO PROCEED"

600 INPUT M

610 IF A*«"CH THEN COPY
620 PRINT i?"INPUT E TO ENDiS T

0 BOOK SEATS. "
630 INPUT A$
640 IF A$="E"' THEN GOTO 670
650 CLS
660 GOTO 170

C Loop variable for seats in seat plan printing. As with R

above, re-initialised as simple variable on return to seat

selection routine.

Note that the use of variables in two ways, as with R and C in this

program is only possible if the simple variables will be re-initialised

every time they are used, otherwise problems can arise. A loop variable

erases a simple variable of the same name. It would be better practice

to use different names for the two types of variables.

670 PRINT "PROGRAM STOPPED.USE
GOTO 170 TO"?"RESTART. "

680 STOP

690 REM ** END PROGRAM ##

Screen display, at end of seat plan print routine (the first prompt has

been responded to with a user input):

ROW 10 000000
ROW 9 000000
ROW 8 000000
ROW 7 000000
ROW 6 000000
ROW 5 000000
ROW 4 000100
ROW 3 100000
ROW 2 mill
ROW 1 000000

INPUT C TO COPY,ANY TO PROCEED

INPUT E TO END,S TO BOOK SEATS.

The variables used in the theatre booking program are as follows:

“THEATRE” - DATA TABLE

S(10,6)

R

C

A$

SEATS

N

R

X

Array to store 10 rows of 6 seats (value 1 when seat

booked, 0 when free).

Current Row of array in processing.

Current Seat number in processing.

User Input string for menu choices.

Marker used to indicate whether seats are free in current

row. Set to 0 when no seats free, 1 when seats available.

Loop variable. Value used in processing inside loops to

check seat availability, and print seat numbers.

Loop variable used to print seat plan. Note this is the

same name as the variable for Rows above. This name

may be used in two different ways in this program because

the value of the simple variable R is re-initialised by the

input at line 170 on return to the seat selection routine.

Variable used for reverse printing of seating rows.

290 291

SECTION T: SORTING SEARCHING AND STORING ARRAYS

Tl: Searching and Sorting

Searching a list of numbers (or strings) for specified values can

obviously be done much more efficiently if the numbers (or strings) are

sorted according to some specified order, commonly alphabetical order

or ascending numerical order. In electronic data processing groups of

records (files) can be handled more efficiently if the records are pre¬

sorted into a specified order (e.g. by merging transaction files into a

master file), Various techniques have been developed to sort data and

several of the simpler methods are illustrated in this section together

with two simple methods of searching lists.

There is a considerable difference in the efficiency of the various

sorting techniques depending on the type and volume of data to be

sorted. A technique which is good for a random list of numbers may

not be appropriate for a list in which only one number is out of

sequence. For random lists the Quick Sort and Shell Sort techniques

are very much faster than a Bubble Sort. Deciding on which is the most

suitable method is largely a matter of experience and you should

experiment using the different techniques for equivalent sets of

numbers, timing the sort procedures.

Many sorting algorithms exist, and we will first deal with the

simplest.

The BUBBLE SORT is used for sorting numbers (or strings with

appropriate alterations) into ascending or descending order. The

principle of the bubble sort is to compare adjacent numbers and change

positions if they are in the incorrect order. This is done for elements 1

and 2, then 2 and 3, 3 and 4...X- 1 to X at the end of which the

highest number is in the Xth position. This is repeated (and the next

highest number bubbles up to the X-lth position) and repeated

again, until the ordering is complete.

The following program is a bubble sort to put numbers into

ascending order. The sorting routine itself is in lines 130 to 225.

10 REM “BUBBLE"
20 PRINT ’’TYPE NUMBER OF ITEMS

TO BE SORTED”
25 PRINT ’’MAXIMUM NUMBER 50"
30 INPUT X
35 IF X>50 THEN GOTO 25
40 DIM A(50)
60 PRINT "TYPE NUMBERS ONE AT

A TIME"
75 LPRINT "UNSORTED LIST"
80 FOR N=1 TO X
90 INPUT Z

100 LET A(N)=Z
110 LPRINT A(N)
120 NEXT N
125 LPRINT

130 REM **SORTING ROUTINE****
140 FOR N=1 TO X~1
150 FOR M=1 TO X-N
160 LET C=A (M)
170 LET D=A (M-KL)
180 IF C<=D THEN GOTO 210
190 LET A(M)=D
200 LET A(M-KL) =C
210 NEXT M
220‘NEXT N
225 REM ******END SORT******
230 LPRINT "SORTED LIST"
240 FOR N=1 TO X
250 LPRINT A(N);" ";
260 NEXT N

Sample printout:

UNSORTED LIST

129 267 56 41 69 43 99 90 4 8

SORTED LIST

4 8 41 43 56 69 90 99 129 267

To illustrate the operation of the program, we'll take the first four of

these numbers and see how the program sorts them:

Bubble sort for 4 numbers A(l), A(2), A(3), A(4)

input as 129, 267, 56, 41

Procedure:
(1) Go through the list comparing successive number

pairs. For example:

A(l) and A(2), then A(2) and A(3).

If A(1)>A(2) then they are swapped so that A(2)

becomes A(l) and A(l) becomes A(2). If A(l)

<A(2) then they are left as is.

We see that the largest number in the. list will

finally be in the highest position, i.e. A(4).

(2) On the first pass we make three comparisons and

the largest number will end as A(4).

On the second pass we make two comparisons,

and the largest number will be in position A(3).

On the third pass we make one comparison.

The larger number will be A(2).

No need for any more passes. Smallest number

will be A(l).

There are four numbers: so X = 4

We need X - 1 passes: so N = 1 TO (X - 1)

« 1 TO 3 passes

For each pass we need from 1 to X - N comparisons:

so M = 1 to (X - N) comparisons

Here is a diagram in table form of the operations performed in the

course of the sort:

292
293

Table of Operations

Pass 1 Pass 2 Pass 3

N = 3 N = 2 N = 3

START M = 1 M = 2 M = 3 START
PASS

2

M = 1 M = 2 START
PASS

3

M = 1 FINISH

A(l) 129 129 129 56 56 41 41

A(2) 267 267 56 56 129 41 41 56 56
A(3) 56 267 41 41 129 129 i 129

A(4) 41 267 267 267 267

T2: Bubble Sort with Flag

10 REM "SORTFLAG"
20 PRINT "TYPE NUMBER OF ITEM

S TO BE SORTED"
25 PRINT "MAXIMUM NUMBER 50"
30 INPUT X
35 IF X>50 THEN GOTO 25
40 DIM A(50)
60 PRINT "TYPE NUMBERS ONE AT

A TIME"
70 PRINT "UNSORTED LIST"
80 FOR N=1 TO X
90 INPUT Z

100 LET A(N)=Z
110 PRINT A(N) ;" ";
120 NEXT N
125 PRINT
130 REM **SORTING ROUTINE****
140 FOR N=1 TO X-l
145 LET S=0
150 FOR M=1 TO X~N
160 LET C=A(M)
170 LET D=A(M+1)
180 IF C<=D THEN GOTO 210
190 LET A (M) =D
200 LET A(M+1)=C
205 LET S=1
210 NEXT M
215 IF S=0 THEN GOTO 230
220 NEXT N
225 REM ********END******
230 PRINT "SORTED LIST"
240 FOR N=1 TO X
250 PRINT A(N) ? " ";
260 NEXT N

In order to ensure that the sort is completed as quickly as possible, a

flag (in this case the variable S) is introduced to indicate if it has been

necessary to swap elements in the list. S « 1 when a swap has occurred

and sorting will continue until S = 0 at line 215. This prevents

unnecessary sorting taking place. The procedure and program are

otherwise the same as the bubble sort. The lines 145, 205 and 215 have

been inserted into the “BUBBLE” program.

294

Exercise

Draw up the table of operations for this program, as was done for the

“BUBBLE”.

T3: Alphabetic Sort

The Bubble Sort (and all other sorts) may be used to sort strings by

using appropriate string variables and string arrays.

5 REM "ALPHASORT"
10 PRINT "HOW MANY STRINGS"
20 INPUT X
30 PRINT "MAXIMUM 10 CHARACTERS"
35 PRINT
40 DIM A$(X,10)
50 FOR N=1 TO X
60 INPUT A $(N)
70 NEXT N
80 PRINT "UNSORTED LIST"
90 FOR N=1 TO X

100 PRINT A ${N) ,
110 NEXT N
120 PRINT
130 REM * *S ORTING ROUTINE**
140 FOR M=1 TO X-l
150 FOR N=1 TO X-M
160 IF A$ (N-f-1) >=A$ (N) THEN GOTO 200
170 LET T$=A$(N+l)
180 LET A$(N+l) =A$(N)
190 LET A$(N) -T$
200 NEXT N
210 NEXT M
220 PRINT
230 PRINT "SORTED LIST"
240 FOR N=1 TO X
250 PRINT A $(N) ,
260 NEXT N

Some care must be exercised if the above sort is to be used on numbers

entered as strings. The example given below shows that it will work

provided one ensures that all numbers entered have the same number of

figures.

(i) Incorrect use:

HOW MANY STRINGS

MAXIMUM 10 CHARACTERS

UNSORTED LIST

123 99

543 6

456 897

567 21

345 45

295

SORTED LIST

123 21

345 45

456 543

567 6

897 99

(ii) Correct use:

HOW MANY STRINGS

MAXIMUM 10 CHARACTERS

UNSORTED LIST

123 099

543 006

456 897

567 021

345 045

SORTED LIST

006 021

045 099

123 345

456 543

567 897

T4: Insertion Sort

This is another type of sort which is more efficient than the Bubble Sort

and is also the basis of an even faster sort called a Shell Sort. Speed is a

prime consideration when sorting large amounts of data.

Consider the list of numbers:

3 2 5 4 1

We start with the first entry in the list. Then we take the second item,

compare the two, and swap if necessary. Then the second is compared

with the third, a swap performed if required, and if a swap was made

the first and second are compared again, and swapped if necessary.

Then the third item is compared with the fourth, and so on. The list
above will be sorted like this:

296

Swap

Swap

Swap

Swap

Swap

Swap

Consider the list A(l), A(2) . . . A(X). To insert item A(I + 1) in the

correct position:

Let T = A(I -I- 1), then

if T> = A(I) no swap is necessary and no further comparisons are

required.

if T<A(I) we let A(I + 1) = A(I) and we move on to A(I - 1), then

if T> = A(I - l),we let A(I) = T and insertion is complete

if T<A(I - 1), we let A(I) = A(I ~ 1), and so on down the list.

The various steps we will make in the program are therefore as follows:

1) Set J = I and T = A(I + 1)

2) If T> = A(J) let A(J + 1) - T and stop

3) Let A(J + 1) = A(J)

4) Let J = J - 1

5) If J< 1 let A(J + 1) = T and stop. If not, go to (2).

6) Repeat for each value of I (from 1 to N - 1) where

N = number in list.

297

Program Listing

5 REM "INSERT"
10 PRINT "HOW MANY NUMBERS?"

PRINT
20 PRINT
30 INPUT X
40 DIM ACX)
50 PRINT "TYPE NUMBERS"
60 FOR N=1 TO X
70 INPUT ACN)
SO NEXT N
90 PRINT

100 PRINT "UNSORTED LIST"
110 FOR N=1 TO X
120 PRINT ACN)?" "?
130 NEXT N
140 PRINT
190 REM #*##4H*#*##*#**###**#***

** SORTING MODULE

200 FOR 1=1 TO X-l
210 LET J=I
220 LET T=A CI +1)
230 IF T >= ACJ) THEN GOTO 270
240 LET ACJ+1)=A<J)
250 LET J=J-1
260 IF J >= 1 THEN GOTO 230
270 LET ACJ+1)=T
280 NEXT I
290 REM

**END SORT MODULE **
ft##*#######*#*########

300 PRINT
310 PRINT "SORTED LIST"
320 FOR N=1 TO X
330 PRINT ACN)?" "?
340 NEXT N
350 REM **END**

A trace of the program, using our example list again, can be shown like

this:

1 = 1 1 = 2
1 = 3_1 1 = 4

Start J = 1 J = 2 J = 3 J = 2 J = 4 J = 3 J = 2 J = 1 J = 0

T = 3 ►3

1! Ln

T = 4 T = 4 T = 1 T = 1 T = 1 T = a T = 1

A (1)=3 2 1

A (2) =2 3 3 2

A{3)=5 5 4 3’

A(4)=4 5 4

A (5) =1 5

298

T5: Shell Sort

The procedure in this sort is to precede an insertion sort by a process

which, if we consider a list of numbers to be placed in ascending order

left to right, will move low values to the left and high values to the right

more quickly.

Consider an 8 element list A(8), holding the values: 74, 32, 59, 46,

26, 9, 62, 42. The sort proceeds in the following stages:

1) Divide the 8 by 2 and compare elements 4 positions apart in the

list, swapping if necessary:

A (1) A (2) A (3) A (4) A (5) A(6) A(7) A(8)

Compare A(l) and A(5) Swap

A(2) and A(6) Swap

A(3) and A(7) In order - leave

A(4) and A(8) Swap

New list:

26 9 59 42 74 32 62 46

2) Divide the 4 by 2 and compare the elements 2 positions apart in

the list and swap if necessary:

26

9 _ 42

59 —

42 TSWAP) 3*2

42 32 46

New list:

26 9 59 32 62 42 74 46

3) Divide 2 by 2 and compare elements 1 apart in the list, which is

using the equivalent 6f an insertion sort to give the final order;

9 26 32 42 46 59 62 74

The steps we make in the program are as follows:

a) Select an integer S (number of positions apart from

comparison). This is usually taken as INT (N/2) where

299

N = number of items in the list.

b) Sort the lists of items S positions apart, by comparing and

swapping if necessary.

c) If SCI then stop, since the list is sorted.

d) If S> = 1 then pick a new value of S (usually INT(S/2)), and

repeat steps b) to d) as often as necessary.

5 REM "SHELL”
10 PRINT "HOW MANY NUMBERS?"
20 INPUT X
30 DIM A(X)
50 PRINT "TYPE NUMBERS"
60 FOR N=1 TO X
70 INPUT A(N)
80 NEXT N
90 PRINT

100 PRINT "UNSORTED LIST"
110 FOR N-1 TO X
120 PRINT A(N); " "?
130 NEXT N
140 PRINT
190 REM ^SORTING ROUTINE**
200 LET S=0<
210 LET S-INT (S/2)
220 IF SCI THEN GOTO 400
230 FOR K=1 TO S
240 FOR I=K TO X-S STEP K
250 LET J=I
260 LET T=A (I-fS)
270 IF T>=A(J) THEN GOTO 310
280 LET A (J-fS) -A(J)
290 LET J=J~S
300 IF J>=1 THEN GOTO 270
310 LET A{J +S) =T
320 NEXT I
330 NEXT K
340 GOTO 210
350 REM **END OF SORT**
400 PRINT
410 PRINT "SORTED LIST"
420 FOR N-l TO X
430 PRINT A(N) ; " " ;
440 NEXT N
450 REM **END**

300

Hand trace of Shell Sort

Consider the 8 element list 74, 32, 59, 46, 26, 9, 62, 42.

X = 8.

340

At this stage (1) the list is 26, 9, 59, 42, 74, 32, 62, 46.

At this stage (2) the list is 26, 9, 59, 32, 62, 42, 74, 46.

The final stage is the comparison of neighbouring elements using the

insertion sort technique, to which the Shell Sort routine is equivalent

when S = 1. This is perhaps more easily seen if we consider the trace

below of the operation of the Shell Sort program on a simple 5-item list,

in which only two passes need to be made.

301

Pass 1
Pass 2

Start

A{1)=2

A (2) =4

A (3) =1

A (4) =3

A(5)=5

The two methods of tracing a program illustrated here should show you

the method by which a systematic analysis can be made of the changing

values of variables in a program as processing proceeds. This is a

procedure you should put to use when designing a program (be. in

checking that the algorithm will work as intended) and when checking

the operation of other people’s programs that you wish to analyse. The

procedure is also a great help in debugging a program. Break points

inserted into the program (STOP commands), after which you can

print the values of variables by direct commands, or PRIN

statements, inserted as appropriate to print the values of variables at

each step in the program, will enable you to check that the values

occurring in the program are the same as the ones your trace diagram

shows. You can even LPRINT values to get a printout, if many passes

are to be made in the program.

T6: Quick Sort

This provides a fast sorting technique which works by subdividing the

list into two sub-lists and then subdividing the sub-lists. The principle

of the Quick Sort is as follows: consider a list A(X) containing X

numbers. We assume as an example that X = 8 and the numbers are as

shown below. The following steps are carried out.

302

1) Initialise two pointers, I and J, at opposite ends of the list. Let

X(I) be the reference number. In our example, this is 63.

I J
63 27 43 96 72 31 82 43

2) Compare the two numbers indicated by the pointers and swap if

necessary.

I J
43 27 43 96 72 31 82 63

Move the pointer < opposite the reference number one place

towards it.

I J
43 27 43 96 72 31 82 63

Repeat steps 2) and 3) until I=J.

I J
43 27 43 96 72 31 82 63

I J
43 27 43 96 72 31 82 63

I J
43 27 43 63 72 31 82 96

I J
43 27 43 63 72 31 82 96

I J
43 27 43 31 72 63 82 96

I

43 27 43 31 63 72 82 96

When this stage has been reached the list has been split into two

sub-lists. The reference number is now in its correct position in

the list, and the sub-lists are the numbers to the left and right of

this position.

303

5) One of the lists is stored for future sorting (see below) and the

other is taken through steps 1 to 4 above.

[43 27 43 31] 63 [72 82 96]

continue with

sub-list

store

sub-list

in correct

position

I J
43 27 43 31

I J
31 27 43 43

I J
31 27 43 43

New Sub-list I

[31 27 43] f

M. 27 43 in correct

position
31 27 43

27 31 43

i
in correct

position

6) This process is repeated, in each case storing a sub-list where

necessary, and.finally going back and sorting all stored sub-lists

so that eventually each number is in the correct position.

The left-hand and right-hand numbers of a list are denoted by sub¬

scripts L and R respectively,
The pointer positions are denoted by I and J and a flag S is set to

indicate the pointer at the reference number, so that:

S = 1 if reference number at pointer I

S = - 1 if reference number at pointer J

If at the end of step 4 the reference number is at I (as in our example)

then the list has been split into:

reference

sub-list sub-list

(L, . . . ,1-1) 1 (I +1, . . • , R)

The right-hand list is remembered by setting up a stack, using an array

S (P,2) with P initially set to zero. As each sub-list is stored, we make:

P = P+ 1 S(P,1) = I + 1 and S (P,2) ~ R

304

The array S is initially dimensioned as S(X,2) for a list with X

elements. P indicates the number of the sub-lists; S(P,1) the left-hand

element and S(P,2) the right-hand element of the sub-list. In the

example given, at step 5 we will have the first sub-list generated stored

by setting:

P = 1, S(P, 1) - 6 and S(P,2) = 8

Thus each list to be stored is placed in sequence into the array, this

process being known as PUSHing on to the STACK,

When the sub-list that the program continues with finally has only

one number we must return to sort the stored lists. We retrieve a stored

sub-list (POP a list out of the STACK) by letting:

L = S(P,1),R = S(P,2) and P - P - 1

and continuing until all the lists are sorted.

Program Listing

5 REM "QUICK"
10 PRINT "HOW MANY NUMBERS?"
20 INPUT X
30 DIM A<X>
40 DIM SCX?2)
50 PRINT ?? "INPUT NUMBERS"
60 FOR N=1 TO X
70 INPUT A(N)
80 NEXT N
90 PRINT

100 PRINT "UNSORTED LIST"
110 FOR N=i TO X
120 PRINT ACN)“" "!
130 NEXT N
140.PRINT
180 REM *************** ********

* ** SORTING ROUTINE **
190 LET P=0
200 LET L=1
210 LET R=X
220 LET I=L
230 LET J=R
240 LET S=-1
250 IF AC I) <= ACJ) THEN GOTO 3

00
260 LET T=A CI)
270 LET AC I)=ACJ)
280 LET ACJ)=T
290 LET S—“S
300 IF 8=1 THEN LET 1=1+1
310 IF S=-l THEN LET J=J-1
320 IF I<J THEN GOTO 250
330 IF 1+1 >= R THEN GOTO 370
340 LET P=P+1
350 LET SCP?1)=I+1
360 LET S C P ? 2)=R
370 LET R=I~1

305

IF LCR THEN GOTO 220
390 IF F-0 THEN GOTO 450
400 LET L=S(Fi1)
410 LET R-3CFV2)
420 LET F-F'-l
430 GOTO 220

440 REM *# END OF SORT **
##*##*#*#***##***

450 PRINT
460 PRINT "SORTED LIST"
470 FOR N=1 TO X
480 PRINT AIN) >“ "4
490 NEXT N
500 REM ** ENDPROG **

Lines 190 - 230 initialise P, and set values for L, R and the pointers

I and J. , . , c
Line 240 sets the flag which indicates the position of the reference

pointer (S =-1). , A /T. ..
Lines 250 - 290 make the interchange of A(I) and A(J) if necessary

and reset the flag.
Lines 300 - 320 move whichever of I and J is to be moved, according

to how the flag is set.
Line 330 checks if I is at the end of the list, bypassing the sub-list

storage routine.
Lines 340 - 360 ‘push’ sub-lists on to the stack.
Lines 370 and 380 check if the sub-list has more than one element,

sending control back to line 220 if it has.
Line 390 sends control to the print routine if no sub-lists are stored.

Lines 400 — 420 ‘pop’ sub-lists out of the stack.

Line 430 starts the sort routine for the ‘popped’ sub-list.

T7: Index Sort

When data records or files contain several items (‘fields’) of

information we often need to sort them according to one particular

item. An index sort routine will enable us to do this.
For example, we may have a series of records each containing a

reference number, name, sex, age, home town and occupation:

10 SMITH MALE 21 OXFORD BUTCHER

20 JONES FEMALE 32 ENFIELD GROCER

Each record contains six fields. We might wish to sort these records

alphabetically by name (field 2) or numerically by age (field 4). A sort

of the type presented here enables this to be done for any of the fields.

Since it uses string arrays to hold records and performs an alphabetical

sort it is necessary for all numerical items in any field to contain the

same number of digits. We must hence use 010, 020, 100, 200 and not

10, 20, 100, 200, using leading zeros to maintain the value, but giving

the same number of digits.

The procedure is as follows:

1. Set up an array N$ (N,L,C) containing N records, each of L

fields with a maximum of C characters in any string. For

example, we might use an array N$ (10,5,20), to represent 10

records, each with 5 fields, which can each contain up to 20

characters.

2. Decide on the key field (i.e. the field you wish to sort) - say the Jth

field. We must then set up an array K$(N,C) to store it, and let

K$ (R) = N$ (R,J) for the number of records (FOR R = 1 to N)

so that the list K$ (N,C) will then contain the items we wish to

arrange in order.

3. Sort the key field into ascending order. This is done in the

subroutine starting at line 900 by counting how many times each

element in the array K$ (N,C) is > - the other elements

(including itself). This sort uses a numerical array X(N) to store

the result of this count (P) for each element, by setting X(P) to

equal N, when K$(N) is the item being checked.

We first set P = 1 (since each item is equal to itself) and then

check through the other items of K$ (lines 920 to 970), making

the count by letting P = P + 1 when the element is > « another

element. If the elements are equal, the original order in N$ is

kept (line 960): (i.e. test first element of K$ and set X(P) = 1,

reset P, test second element of K$ and set X(P) = 2, etc.)

For example, with 10, 30, 20, 40 as our K$ list, the array X(4)

would hold the values:

10 X(l) = K$ (1)

30 X(3) = K$ (2)

20 X(2) - K$ (3)

40 X(4) - K$ (4)

Printing out K$ (X(l)) to K$ (X(4)) in order will give the sorted

order of K$ elements.

4. The array N$ (X (N), L, C) will now consist of the records

sorted in the appropriate order, according to the field chosen,

and is printed out using the loop variables R and I to access N$

(X(R), I) in lines 290 to 340.

Program Listing

5 REM M INDEX11
10 PRINT “SORTING RECORDS“
20 PRINT »i"TYPE MAXIMUM NUMBE

R OF CHARACTERS IN ANY ITEM"

306 307

30 INPUT C
40 PRINT i j "HOW MANY RECORDS'?'"
50 INPUT N
AO PRINT n "HOW MANY ITEM'S IN

EACH RECORD?"
70 PRINT
80 INPUT L
85 REM ***********************

INITIALISE $ ARRAYS
90 DIM NMN1L1C)

100 DIM K$(N,C)
110 DIM X(N)
120 REM **********************

**INPUT RECORDS **
130 FOR R=1 TO N
140 PRINT "TYPE "?L!" ITEMS FOR
RECORD ";R
150 FOR 1=1 TO L
160 INPUT N$(R.I)
170 NEXT I
180 NEXT R
190 PRINT
200 PRINT "WHICH ITEM IS SORTIN

0 KEY?"
210 INPUT J
220 FOR R=1 TO N
230 LET K$(R)=N$(RtJ>
240 NEXT R
250 GOSUB 900
260 PRINT
270 PRINT "SORTED RECORDS ARE:"
280 PRINT
290 FOR R=1 TO N
300 FOR 1=1 TO L
310 PRINT N$CX(R)>I)5" "J
320 NEXT I
330 PRINT
340 NEXT R
350 PRINT
360 PRINT "DO YOU WISH TO CONTI

NUE?<:Y/N) "
370 INPUT Y$
380 IF Y$="Y" THEN GOTO 200
390 STOP

400 REM **PROGRAM END **

890 REM ***********************
**SORTING SUBROUTINE **

900 FOR A=1 TO N
910 LET F'=l
920 FOR B=1 TO N
930 IF K$<A>>K$(BI THEN LET P=P

+ 1
940 IF K*(A)=K*CB) THEN GOTO 96

0
950 GOTO 970

960 IF A>B THEN LET P=P+1
970 NEXT B
980 LET XCP)=A
990 NEXT A

308

1000 RETURN

1010 REM ** ENDSUB **

For example, if we input a storage array of 4 records with 3 fields,

maximum 6 characters in any item, and use as input data:

SMITH, 460, OXFORD
JONES, 080 LEEDS
BROWN, 730, YORK
WHITE, 095, BATH

Results are as follows:

(i) Using field 1 as key

Sorted records are:

BROWN 730 YORK

JONES 080 LEEDS

SMITH 460 OXFORD

WHITE 095 BATH

(ii) Using field 2 as key

Sorted records are:

JONES 080 LEEDS

WHITE 095 BATH

SMITH 460 OXFORD

BROWN 730 YORK

(iii) Using field 3 as key

Sorted records are:

WHITE 095 BATH

JONES 080 LEEDS

SMITH 460 OXFORD

BROWN 730 YORK

T8: Linear Search

The most straightforward way of looking for a particular number in a

list of unsorted numbers is to examine the list one by one in each case

comparing with the ‘wanted’ number.

In this program a set of random numbers is created between 100 and

199 and it is arranged so that there is only a single occurrence of each

309

number. This is in lines 40-60. The list is printed out in lines

70- 110. The search routine is then carried out in lines 200- 300.

Clearly a number near the beginning of the list is found quickly but one

at the end rather slowly. For a 50 element list the average number of

searches will be 25.

5 REM “SEARCH!”
10 DIM A(100)
15 PRINT “TYPE NUMBS! <100“
20 INPUT N
30 IF N>100 THEN GOTO 15
40 FOR TO N
50 LET A(M)-INT (100*RND) +100

52 FOR R=1 TO M-l
54 IF A(M)-A(R) THEN GOTO 50

56 NEXT R
60 NEXT M
70 PRINT "UNSORTED LIST”

80 FOR M=1 TO N
90 PRINT A(M);"

100 NEXT M
110 PRINT
200 REM **LINEAR SEARCH**
210 PRINT "TYPE NUMBER BETWEEN"
220 PRINT "100 AND 199"
230 INPUT X
240 FOR I“1 TO N
250 IF X=&(I) THEN GOTO 300
260 NEXT I
270 PRINT "NUMBER NOT IN LIST"
280 PRINT "AFTER “;N;" SEARCHES"

290 GOTO 400
300 PRINT “NUMBER ";X;" AFTER

I;" SEARCHES"
400 REM **END**

T9: Binary Search

This is a much faster search technique than the linear search but can

only be used for a list that has already been put in order. In many

applications you will be dealing with an ordered list and under such

circumstances this is the appropriate method to use.

In the program the binary search technique is in lines 500 to 600.

The basic idea is to compare the wanted number with the middle item

of the ordered list. The wanted item is then either smaller (in which

case we know it is in the first half of the list) or larger (in which case it is

in the second half of the list) than the middle item, unless it is equal to

it - in which case we have completed our search. The process is

repeated, in each case halving the list. Consider a search for 30 in the

following list:

1 2 4 6 8 10 12 14 16 18 20 24 28 30 36

We first choose 14 (middle).

Our list is now:

16 18 20 24 28 30 36

and we choose 24 (middle).

Our list is now:

28 30 36

We select 30 (middle).

Thus we have found the number in three searches (compared with

fourteen using the linear search).

In the program the following sections occur:

(i) Setting up initial unordered list and printing out (lines

10-150).

(ii) Sorting this list into order and printing it out (lines 200 - 330).

(iii) Binary search with printout (lines 500 - 680).

5 REM "SEARCH2"
10 DIM A(50)
20 PRINT "TYPE NUMBER <50"
30 INPUT N
40 IF N>50 THEN GOTO 20
50 FOR M=1 TO N
60 LET A(M)~INT (100*RND)+100
70 FOR R=1 TO M-l
80 IF A(M)~A(R) THEN GOTO 60
90 NEXT R

100 NEXT M
110 PRINT “UNSORTED LIST"
120 FOR M“1 TO N
130 PRINT A(M);" "?
140 NEXT M
150 PRINT
200 REM **INSERTION SORT**
210 FOR 1*1 TO N-l
220 LET J-I
230 LET T=A(1+1)
240 IF T>=A(J) THEN GOTO 280
250 LET A(J+1)=A(J)
260 LET J=J-1
270 LET J>=1 THEN GOTO 240
280 LET A(J+1)=T
290 NEXT I
295 REM ***ENDSORT***
300 PRINT "SORTED LIST"
310 FOR M=1 TO N
320 PRINT A(M);"
330 NEXT M
340 PRINT
350 PRINT "TYPE NUMBER REQUIRED"
360 PRINT “BETWEEN 100 AND 199“
370 PRINT "TO FINISH TYPE 999"
380 INPUT X
390 IF X=999 THEN GOTO 700
400 PRINT

310 311

410 PRINT "SEARCH ";N;H ITEM LI
ST"

500 REM **BINARY SEARCH**
510 LET L=1
520 LET H=N
530 LET CO
540 LET M=INT ((H+L)/2)
550 LET CO+1
560 IF X=A(M) THEN GOTO 630
570 IF L>=H THEN GOTO 660
580 IF X>A(M) THEN GOTO 610
590 LET H=M-1
600 GOTO 540
610 LET L=M+1
620 GOTO 540
630 PRINT "NUMBER FOUND ";X
640 PRINT "AFTER ",-C;" SEARCHES"

650 GOTO 350
660 PRINT "NIWBER NOT FOUND"
670 PRINT "AFTER ";C;" SEARCHES"

680 GOTO 350
690 REM **END SEARCH**
700 REM **END**

Results:

TYPE NUMBER <50

UNSORTED LIST

144 128 117 118

150 107 188 197

168 160 130 181

186 190 155 167

131 142 113

SORTED LIST

143

100 101 106 107

119 122 128 130

143 144 148 150

160 163 165 167

186 188 189 190

101 189 111 198

172 106 157 148

100 165 175 133

199 138 122 163

154 194 119 153

118

142

157

181

199

111 113 117

131 133 138

153 154 155

168 172 175

194 197 198

TYPE NUMBER REQUIRED

BETWEEN 100 AND 199

TO FINISH TYPE 999

SEARCH 40 ITEM LIST

NUMBER FOUND 198

AFTER 5 SEARCHES

T10: Storing a List

We can store data in an array for use in a program via INPUT loops

when there is more data to be inserted than we care to put directly in

the program using LET instructions. There are programs in the text

that use this technique (e.g. “ELEMENT”). To illustrate the

technique, here is a simple example that doesn’t require you to INPUT

anything. Key in and run the first program to create A(N) and fill it

with random numbers. Edit the program, replacing the original lines

with those of the second program. SAVE this program. LOAD it back

in. If we used RUN it would clear all the variables, and wipe out the

array we have stored.

Program execution must be started with a GOTO statement, in this

case GOTO 10. The array will then print out.

10 DIM A(40)
20 FOR N=1 TO 40
30 LET A(N)-INT (100*RND) +100
40 NEXT N

10 REM "SAVED*ARRAY"
20 REM **EXECUTE PROGRAM* *
30 REM * * US ING GOTO 10**
40 PRINT MLIST OF RANDOM NUMBERS"
50 PRINT "BETWEEN 100 AND 199"
60 FOR N=1 TO 40
70 PRINT A(N)
80 NEXT N

So this is the general procedure:

(1) Write an array creation program and run it, i.e. A(N) created

and data inserted.

(2) Edit out lines and put in additional lines as required.

(3) SAVE the final program.

(4) LOAD program and execute using a GOTO statement.

To avoid the possibility of the user entering RUN, we can use a

structure which automatically initiates the program on loading. The

program below for the ZX81 also illustrates the fact that one may use a

string variable as a program name.

Lines 10 to 80 create array and have the input routine. These lines

could be edited out as soon as the data was input, or left in to enable

(through the use of RUN) a different set of data to be input.

Line 90 onwards are the program to use the stored data.

Line 9010 requests a string input to be used as the program name.

9020 gets the string, and 9030 and 9040 give you the chance to write it

down before you forget.

9050 waits for a key to be pressed, and 9070 saves the program and

its variables. One of these variables stores the line the computer had

got to in the program, and when loaded back it starts where it left off

(9070) and goes to line 90 automatically.

10 REM **AUTO-RUN ROUTINE**
20 REM AUTOMATIC RUN WILL

PRESERVE VARIABLES
30 REM AVOID STATEMENTS

OR EDIT THEM OUT.
40 REM ***DIMENSION/INPUT,TO

STORE VARIABLES***
50 DIM A(20)
60 FOR F=1 TO 20

312 313

70 INPUT A(F)
80 NEXT F
90 PRINT " PROGRAM TO USE DATA"

100 FOR F=20 TO 1 STEP -1
110 PRINT A(F)
120 NEXT F
130 REMMORE PROGRAM
140 REM'...

8990 REM **SAVE AND AUTO-RUN**
9000 CIS
9010 PRINT "INPUT PROGRAM NAME"
9020 INPUT A$
9030 PRINT "PROGRAM NAME:"?A$
9040 PRINT "READY TO SAVE .NOTE P

ROGRAM NAME,PRESS A KEY TO
SAVE PROGRAM", "AFTER SETT I
NG CASSETTE TO RECORD*****"

9050 IF INKEY$="" THEN GOTO 9050
9060 CIS
9070 SAVE A$
9075 REM **GOTO LINE AFTER DIM/

INPUT ROUTINE IF NOT EDITED
OUT**

9080 GOTO 90

The Spectrum has an automatic message and built in wait-for-key-

press routine. It also has an automatic run-after-LOAD facility. If a

line is entered in a program of the form:

9000 SAVE “program” LINE 200

and the program is saved with a GOTO 9000, the program will start

running after loading by going to the line stated (200 in the example).

For the Spectrum, this program needs modifying by deleting lines

9070, 9075, 9080, changing 9040 to read PRINT“NOTE

PROGRAM NAME”, 9050 to PAUSE 0, and 9060 to SAVE

AS LINE 90.

Til: Storing a String Array

The ZX81 program PRETTY draws a picture on the screen (slowly!)

which is stored in the array A$, dimensioned in line 100. If this

program is run the array A$ is created, and the screen display stored,

character cell by character cell, in A$. The lines in the program can be

edited out so that finally we have a program like PRETTY2. This may

be SAVEd and includes the created array A$. To execute the program

PRETTY2 after loading we must use GOTO 5, to avoid the use of

RUN, which clears all arrays (and hence A$) before execution starts.

5 REM "PRETTY"
10 FOR J=1 TO 10
20 FOR N = 0 TO J*12
30 PLOT 32+J *2 *SIN (N/(J*6)*PI) ,

2 2+J *COS (N/(J*6)*PI)
40 NEXT N
50 NEXT J

100 DIM A$(704)
110 FOR 1=0 TO 21
120 FOR J=1 TO 32
130 LET A$(J+32*I)=CHR$ PEEK (PEEK

16396*256*PEEK 16397+J+33*I)
140 NEXT J
150 NEXT I

5 REM "PRETTY2"
10 PRINT A$

Notice that we have stored the screen display in the array.

Check you understand the process of PEEKing the display file.

The Spectrum stores a screen display using a special form of SAVE.

This has the form: SAVE “PRETTY” SCREENS, where PRETTY

can be any name. This is loaded back using LOAD “PRETTY”

SCREENS.

Try this procedure on your Spectrum. The program above can be

revised for the Spectrum. Enter just the following lines:

10 FOR J = 1 TO 40 STEP 4

20 FOR N - 0 TO J* 12 STEP 4

30 PLOT 125+J*2*SIN(N/(J*6)*PI),88+J*GOS(N/(J*6)+PI)

40 NEXT N

50 NEXT J

Use SCREENS to save the picture as above. To continue with screen

displays, the Spectrum can store a screenful of characters in much the

same way as the ZX81 program above, using SCREENS to access each

character in turn, placing them in sequence in array A$(704). A

screenful of characters is generated at random, using the single

characters from the Spectrum character set, placing these along each

line.

The double loop (lines 60 to 100) uses SCREENS (F,N) to check

each character along each line, placing it in the array A$.

5 DIM A$(704)
10 FOR F=0 TO 21
20 FOR N=0 TO 31
30 PRINT AT FiN? CHR$ <32+ RND

*97)
40 NEXT N
50 NEXT F
60 FOR F=0 TO 21
70 FOR N=0 TO 31
80 LET A*<N+1+32*F>“SCREEN*

<:f?n:>
90 NEXT N

100 NEXT F

Now edit out all the lines, replacing 5 with 5 PRINT A$, and RUN the

program using GOTO 5.

314 315

The same program for the ZX81 needs to use PEEK to access the

display file, just as in “PRETTY”. Replace lines 5 to 50 in

“PRETTY” with the following, to print a random set of ZX81

characters on the screen:

5 REM "SCREENFUL!-"
10 FOR F=1 TO 704
20 PRINT CHR$ INT C RND #64)?
30 NEXT F

The same principle holds good for any string array or numeric array.

Once the program has been run and the data inserted into the array,

the data is safe as long as RUN is not used again, and can be accessed

as required. The ELEMENT program treated in Unit W3 uses this

procedure to store data required in the program.

Exercise

Write the appropriate array creation program for the following

program:

10 REM “SAVE10”

20 REM **THIS PROGRAM MUST BE**

30 REM **EXECUTED USING GOTO10**

40 PRINT “MONTHS OF THE YEAR”

50 FOR N= 1 TO 12

60 PRINT M$ (N)

70 NEXT N

T12: Storing Data in Strings

Strings can be used to store data, which may be accessed using the

string-handling instructions. The data can also be re-assigned, or new

values inserted. Numbers may be used, the STR$ and VAL

instructions enabling conversion from numbers to strings and vice

versa.
The first example has the data stored in A$. The names of the

months are all three letters long, and can thus be accessed using the

simple numeric calculation of line 70.

10 REM STRING DATA STORE
20 REM *A$ HAS DATA*
30 LET A$="JANFEBMARAPRMAYJUNJ

ULAUGSEPOCTNOVDEC"
40 REM *DATA INPUT*
50 PRINT "INPUT MONTH(1 TO 12)

H

60 INPUT MONTH
70 PRINT "MONTH ";MONTH;" IS M

;A$(MONTH*3-2 TO M0NTH*3)

The next program has the full names of the months, with varying

lengths. Full stops are used to make the principle clear, but spaces

between the months would be used in a practical program. (As it is, a

full stop is printed after the month, rather than the useful space.) The

program stops the search after the required month has been found (line

100), but is a little slow on the ZX81 unless FAST is used (line 65).

10 REM STRING DATA STORE
20 REM *A$ HAS DATA*
25 REM **USE SPACES,NOT FULL S

TOPS IN REAL PROGRAM**
30 LET A$=".JANUARY.FEBRUARY. M

ARCH.APRIL.MAY.JUNE.JULY.AU
GUST.SEPTEMBER.OCTOBER.NOVE
MBER.DECEMBER."

40 REM *DATA INPUT*
50 PRINT "INPUT MONTH(1 TO 12)

ft

60 INPUT MONTH
65 FAST
70 LET P=0
80 LET A=1
90 IF A$(A)=V THEN LET P=PT1

100 IF P=M0NTH+1 THEN GOTO 140
110 IF P=M0NTH THEN PRINT A$(A+

l);
120 LET A=A+1
130 GOTO 90
140 SLOW
150 PRINT "IS THE MONTH INPUT"

Spectrum users should, of course, delete the FAST and SLOW

instructions, lines 65 and 140,

The next program uses a string to store numeric data. The numbers

are input, and placed in the string as the STR$ string plus which

is used as an indicator. The data is retrieved by using the subroutine

(at line 1000) to step through each number string in turn, returning the

number string as Z$ when RETURN is executed on an asterisk being

found (line 1020). The two data access routines (lines 110 to 140 and

150 to 180) after the initialisation of NSTRING could occur anwhere

in the program. The data can be accessed in an order by suitable

manipulation of the access instructions (e.g. the reverse loop in lines

150 and 180), and NSTRING can be re-initialised as zero at any point.

Counting loops could be used to access an Nth item of data.

Spectrum users should note that the Spectrum has READ and

DATA functions (which are dealt with in Section W), that provide a

more convenient way of storing and retrieving data for many

applications, but are less flexible than string storage in some cases,

especially when used as illustrated below. DATA items must be keyed

in within the program listing and cannot be input.

5 REM * INITIALISE*
10 DIM A(10)
20 LET A $ = " "

316 317

25 REM *DATA INTO STRING*
30 FOR F =1 TO 10
40 INPUT NUMBER
50 LET A$=A$+STR$ NUMBER + ,'*H
60 NEXT F
70 REM * •
80 REM ..
90 REM
95 REM ^RESTORE START*

100 LET NSTRING-0
110 FOR F=1 TO 5
120 GOSUB 1000
130 LET A(F)-VAL Z$
140 NEXT F
150 FOR F=10 TO 6 STEP -1
160 GOSUB 1000
170 LET A(F)=VAL Z$
180 NEXT F
190 REM
200 REM
210 STOP
995 REM * * *READ STRING SUB***

1000 LET Z$=MM
1010 LET NSTRING-NSTRING+1
1020 IF A$(NSTRING)»"*" THEN RET

URN
1030 LET Z$=Z$+A$(NSTRING)
1040 GOTO 1010

318

SECTION U: THE COMPUTER MEMORY

Ul: Memory Organisation

Digital computers operate with sequences of numbers in the binary

number system. Binary numbers are numbers to base 2, and our

‘normal’ number system is decimal (base 10).

The BINARY system uses only two digits, 0 and 1. These are

binary digits (bits). The computer holds a bit as a voltage level

(+ 5v or 0v) in a switched pathway.

In the decimal system, a number, for example 418, is coded as a number

using the digits 0 to 9. The coding is based on powers of ten. 418

means: (4 times 10 to the power 2) + (1 times ten to the power 1) + (8

times ten to the power 0).

(4 x 102) + (lx 101) + (8x10®)
400 + 10 + 8 418

The binary system of coding uses powers of two in exactly the same

way.

The number 13 is represented as:

(1 x 23) + (1 x 22) + (0 x 21) + (1 x 2*)

110 1 Binary number 1101

8 + 4 + 0 +1 = 13 Decimal equivalent

The binary number 101110 is evaluated as:

(1 x 25) + (0 x 24) + (1 x 23) + (1 x 22) + (1 x 21) + (0 x 2*)

32 + 0 + 8 + 4 + 2 + 0 =46in decimal

Key in the following program, which converts decimal numbers to

their binary representation:

1 REM *DECBI*
2 REM CONVERTS DECIMAL TO

BINARY NUMBERS
10 PRINT HENTER DECIMAL NUMBER

tt

20 INPUT N
30 PRINT N ;
40 LET B$=H”
50 LET L=INT (N/2)
60 LET B=N-2*L
70 IF B=1 THEN LET A$=wl”
80 IF B=0 THEN LET A$==”0W
90 LET B$=A$+B$

100 LET N=L
110 IF L>0 THEN GOTO 50
120 PRINT " IS t1;B$;n IN BINARY”

Input sequences of numbers to familiarise yourself with the binary

system. The program only deals with positive whole numbers. Trace

319

the progam to see how it works, using the examples 13 and 46 given

above as inputs. Non-integer numbers are dealt with by using an

exponent, as with the E notation system for decimals. Binary numbers

have a binary point, and bits to the left of the point are binary fractions,

representing the reciprocal power of two. The binary number 1.101,

for instance, represents:

J_ _0_ J_
(1 x2°) + (23) + (22) + (23)

1 +.54-0 + .125 * 1.625

You may have noticed that binary numbers as seen above are all

positive. Negative numbers are dealt with by using a particular form of

binary representation. The method by which the ZX81 and Spectrum

store numbers is described later in this Section.

In a computer, numbers are held in fixed numbers of bits. These are

referred to as words.

A BYTE is a sequence of 8 bits. The sequence of 8 bits

represents a number between 0 and 255 decimal, 00000000

and 11111111 binary. The ZX81 and Spectrum use 8 bit

words, i.e. 1 byte.

Memory in computers is organised as a linear sequence of addresses.

Each address is a memory location or memory cell holding a single

byte. The binary numbers in these locations are interpreted as

numbers, characters or instructions depending on their context in the

computer memory. The organisation of the memory is constant, but

the space occupied by each area of memory varies according to the

program and its requirements. As an obvious example, a long program

takes up more space for storage than a short one.

Memory is of two types:

READ ONLY MEMORY (ROM) is fixed and cannot be

altered. It contains the BASIC interpreter program, and is

built-in to the computer in manufacture.

RANDOM ACCESS MEMORY (RAM) is variable, multi¬

purpose memory that holds the current program and all the

other elements of data required to run the program.

Spectrum has 16k of ROM and either 16 or 48k of RAM. The memory

is organised as shown in the diagrams below (called memory maps).

The ZX81 and Spectrum have somewhat different memory

organisations. We will deal first with the ZX81, and then the

Spectrum. Spectrum users should read through the ZX81 section,

however, as definitions of the functions of various types of memory are

covered in this Unit.

ZX81 MEMORY MAP

Address Contents
32767

16509

16384

8192

0000

GOSUB STACK

MACHINE STACK

SPARE MEMORY

CALCULATOR STACK

WORK SPACE (Temporary Storage)

VARIABLES STORAGE AREA

DISPLAY FILE

PROGRAM AREA

SYSTEM VARIABLES AREA

Unused addresses. No memory

space exists for this area.

ROM memory area. BASIC

interpreter and operating

system program.

A

RAM

/

Data can only be extracted from ROM (‘read’), and is permanent.

RAM memory can be both read from and written to. Inserting a value

into a memory location in RAM (writing or storing) will wipe out or

overwrite the existing data at that address.

Memory capacity is referred to as the number of Kilobytes (k)

involved. Kilo refers to one thousand, but this is only approximately

true, since a kilobyte is actually 1024 (210) bytes. The ZX81 has 8k of

ROM memory and, with the memory expansion, 16k of RAM. The

The top of memory (RAMTOP) is usually set as shown on switch-on,

at 32767. The computer can be instructed to set RAMTOP at some

lower value, to leave spare memory locations which can be used to

store machine code programs, which are called (like subroutines) from

the BASIC program with the USR instruction. Machine-code

programming is outside the scope of this text.

Some areas of memory are organised in the form of a stack. This is a

system such that the last item entered will be the first to be pulled off

320 321

the stack. A number may only be placed on the top of the stack of

existing numbers, and the only accessible number is the one on the top.

This creates an ordered sequence. In the GOSUB stack this is used to

ensure that the RETURN instructions are followed in correct

sequence. Each GOSUB instruction causes the following line number

to be added to the stack. RETURN then takes the first line number off

the stack to get the correct line number to pass control of the program

back.
The machine-stack memory area is used to keep track of the

operation of the program. The spare memory area is that portion of the

allocated area not occupied by the program and other memory areas.

Although we referred to the top of the stack, it is more correctly the free

end of the stack on to which the numbers are placed. The free end of

the machine stack is at the bottom, imterms of the memory address

sequence, hence the spare memory is below the machine stack in our

diagram.

The calculator stack is used for arithmetic operations. The work

space holds the program line being input and provides temporary

storage for data being manipulated - a scratch pad.

The variables area stores all variables initialised in the course of a

program. They are held in various forms, and we shall deal with the

way numbers and variables are stored in the next Unit.

The display file has been covered in Section Q. The program area

contains the program lines. This area always starts at address 16509.

All other memory areas ride on top of the program area, moving up or

down as the program lengthens (has program lines added or inserted)

or shortens (has lines deleted), apart from the GOSUB and machine

stacks, which are always at the top of memory.

The systems variables area holds the special variables which store

information concerning the state of the computer for use by the

operating system. Certain of the system variables were introduced in

Section Q. Like the D-FILE system variable introduced there, some of

these variables hold the addresses of the divisions between the areas of

memory. Other variables hold values of addresses, line numbers,

characters, etc., to keep track of what state of affairs is current in the

operating system. You have seen, for instance, that the DF-SZ variable

stores the number of lines on the lower part of the screen. Some other

system variables are dealt with in the next Unit. There are a fixed

number of system variables, and their values are always held at known

addresses between 16384 and 16508. The names of the system

variables are not recognised as BASIC variable names, but are just

mnemonics for the system variable function.

On the ZX81 there is no memory corresponding to addresses

8193-16383. Addresses 0 to 8192 contain the system software in ROM

which holds the BASIC interpreter and operation program in machine

code.

SPECTRUM MEMORY MAP

Address Contents

32767 (16k)
65535 (*»8k)

RAMTOP

2373^

23552

23296

22528

I638U

0000

The memory map of the Spectrum memory is somewhat different from

that of the ZX81. The Spectrum also comes in two versions, one with

16k of RAM, one with 48k. The ROM is also larger on the Spectrum,

occupying 16k. Thus the first 16k of memory addresses (0000 to 16383)

are occupied by ROM on the Spectrum. A 16k version then has the

next 16k of memory as RAM, up to address 32767. The 48k Spectrum

uses addresses 32768 to 65535 for the additional RAM memory. Apart

from the size of memory, the arrangement of memory is the same in

both Spectrum versions, as shown on the diagram. The fixed memory

points are given as the memory address.

The Spectrum memory requires more separate areas (reserved for

the additional functions of the Spectrum), and the organisation is

somewhat different. Working from the top of memory down, we notice

an area set aside for user-defined graphics. This occupies 168 bytes,

USER DEFINED GRAPHICS

GOSUB STACK

MACHINE STACK

SPARE MEMORY

CALCULATOR STACK

WORKSPACE (TEMP.STORAGE)

VARIABLES STORAGE AREA

PROGRAM AREA

CHANNEL INFORMATION

(Microdrive Maps Area)

SYSTEM VARIABLES

PRINTER BUFFER

ATTRIBUTES FILE

DISPLAY FILE

ROM AREA. BASIC INTERPRETER

AND OPERATING SYSTEM PROGRAM

322 323

and is set at the actual top of the memory, which is referred to as

Physical RAMTOP. The bottom of the user-defined graphics area is

the RAMTOP that the computer recognises as the top of memory.

This leaves the user-defined graphics area protected from any

interference by the operating system. On switch-on, the address of

RAMTOP is thus set at 65367 with a 48k Spectrum, 32599 on a 16k

version. This is the memory address of the last existing byte of memory

before the user-defined graphics area. Below this are the GOSUB stack

and the machine stack, with the area of free memory below this, as on

the ZX81.
The calculator stack, work space for lines being keyed in or data

being processed, and the variables storage area are all in the sequence

followed by the ZX81 memory. Then we have a significant difference

between the two memories. The display file on the Spectrum is fixed,

and does not appear above the program area, but at the bottom of

RAM. Between the program area and the display file are Spectrum-

specific areas, concerned with input and output and colour. The

channel information area has information required for the operation of

the printer, the keyboard, and the TV screen in terms of its division

into top and bottom screens, the bottom one expanding if necessary to

contain the required lines. This area is adjacent to an area of memory

that will be used to store data necessary for the operation of the Sinclair

microdrive disc system when it becomes available and is attached to a

Spectrum. This area ‘vanishes’ without the microdrive and there is no

sequence of memory bytes allocated to it. This area begins at address

23734. Without the microdrive, this address becomes the start of the

channel information area.

System variables occupy 182 bytes of memory, from 23552 to 23733

inclusive. The printer buffer on the Spectrum is larger than that on the

ZX81 because of the need to store information about each of the 8*8

points in a character cell (where the ZX81 only needed to store

character codes). The buffer, to store a full line for the printer, needs

256 bytes. This is because each line of points in a 32 character line

needs 8*32 bits, and there are 8 of these lines needed to make up a line

on the printer. This buffer occupies the bytes from 23296 to 23551

inclusive.

The colour attributes (see Section W for this) occupy one byte per

character cell, so the storage is 24*32 bytes from 22528 to 23295. These

store the information about the colour (background and printing

colour), brightness and flashing characteristics of each PRINT

position. This information, together with the display file, determines

the screen display. The display file holds the information about the

pattern of dots to be placed on the screen, and the attributes file the

additional data for a colour display. The display file occupies the

memory addresses from the start of RAM (16384) to 22527. This is

6144 bytes, so we can note that on a 16k Spectrum some 42% of RAM

is needed for the display and attributes files only. This leaves about 9k

for program and operating areas, and illustrates the fact that high-

resolution graphics take up large amounts of memory.

Below 16384, the memory addresses are all ROM memory. The

more complex operating system of the Spectrum demands more

instructions in ROM than are required by the ZX81. There is no gap

in memory at all on the 48k machine, all 64k of memory that the Z80A

chip (the central processing unit) can address being used. On the 16k

Spectrum, of course, the memory addresses above 32767 are unused.

U2: PEEK and POKE

The PEEK and POKE instructions have been introduced for specific

purposes in connection with the display file and character storage. This

should have given you some understanding of their uses. Now that you

have been introduced more generally to the way memory is stored in a

computer, you will notice that these instructions provide direct access

to the memory of the computer.

PEEK N returns the value (in decimal notation) of the

number stored in binary form in the memory byte of address

N. In the ZX81, N must be in the range 0 to 8192 to return

the contents of ROM memory, and in the range 16384 to

32767 to return the contents of RAM. For the Spectrum,

ROM extends from 0 to 16383, RAM from 16384 to 32767

(16k version) or 65535 (48k version).

POKE M,N places into the memory address M the binary

form of the decimal number N. N must be in the range 0 to

255 (to fit in a single byte). For the ZX81, and 16k Spectrum

M must be in the range 16384 to 32767. The 48k Spectrum

uses addresses up to 65535. ROM may not have values

POKEd into it.

In general, we use PEEK to extract from memory any values useful to

our program, and POKE to insert values into memory. Remember

that the values (entered and returned in decimal notation) can be

numbers, characters or instructions. Machine-code programming is

performed by POKEing into a specified sequence of addresses the

values which correspond to instructions which the Z80 central

processor chip understands. This sequence of instructions is then called

from within a BASIC program, in a similar fashion to calling a

subroutine, and is executed. At the end of the machine-code program,

a return instruction passes back control to the BASIC program.

We will use PEEK to investigate how numbers and program lines

are stored in the ZX81 and Spectrum. Different types of number have

different formats in which they are held. The normal number in

324 325

memory is held in 5-byte floating point binary form. Each number is stored

in 5 bytes of memory.

The line numbers in a program are stored in 2 bytes of memory.

Numbers in a program listing are stored as their printed characters,

then in 5-byte form.

Enter the program below if you are using a ZX81. It PEEKs the

memory locations from address 16509 onwards, i.e. each address in

memory from the start of the program listing, after printing out the

numbers as instructed in the first three lines, and prints the address,

contents of the address as a decimal number, and the character string

corresponding. The corresponding program and output for the

Spectrum is given after the ZX81 has been dealt with, since the

character codes are different.

5 REM "PROGLIST"
10 PRINT 23
20 PRINT 123E8
30 PRINT 123E-8
40 LET A = 1650 9
50 PRINT A;TAB 10?PEEK A;TAB 1

5?CHR$ (PEEK A)
60 LET A=A-f 1
70 GOTO 50

You will get a display (use COPY to get a printer listing, and CONT to

continue) that looks like this:

23
ia3Q©©©000©
1-23E-6
16509 ©
1651© 1© 8R

16511 1©
16512 ©
16513 245 PRINT
16514- 3© 2
16515 31 3
16516 126 'T
165 17 133 i
16518 56 5
16519 ©
1652© ©
16521 m
16522 118 7
16523 ©
16524 2© =
16525 13 %
16526 ©
16527 245 PRINT
16528 29 1
16529 30 2
16530 31 3
16531 42 E
16532 36 8
16533 126 r?

16534 162 B
16535 55 R
16536 72 rp.

16537 198 Len
16538 192 ••
16539 118 7
1654-© 0
1654-1 3© 2
1654-2 14
1654-3 0
16544 245 PRINT
1654-5 29 1
1654-6 30 2
1654-7 31 3
1654-8 42 El
10549 22 —
18550 36 8
16551 126 7

16552 109 7

326

16553 37 9
16554 22 —

16555 122 7

16556 107 7

16557 118 7
16558 ©
16559 4© C
1656© 15 7

16561 ©

16562 ■ 241 LETT
16563 38 R
16564- 2©
16565 29 1
16566 34 6
16567 33 5
16568 28 ©
16569 37 9

Notice first the way the ZX81 changes the format of the numbers. 23

prints as 23, but 123E8 is printed as 12300000000, and 123E-8 as

1.23E-6. The operating routines put each number into a standard

format for printing to the screen. In order to present a listing of the

program, which is what you’ve typed in, the computer must hold two

forms of the number; first the literal characters and second the 5-byte

floating point form.

Inspect the printout from the program. The first address printed is

16509, holding zero. This is the first of the two bytes holding the line

number. Notice that the more significant byte comes first. This is the other

way round from normal 2-byte values (those of the system variables,

for example). Since the line number is less than 255, the first byte holds

zero and the second (16510) holds 10.

16511 holds 10 again. This is the number of characters in the line.

16512 has zero, since these two bytes hold the line number as (First

byte value) + 256* (Second byte value), in the standard way.

16513 holds the value 245, representing the keyword character

PRINT. Then come the characters 2 and 3 (codes 30 and 31). Bytes

16516 to 16521 hold the values 126, which indicates that the next

sequence of bytes holds a number, and then 133,56,0,0,0. This is the

5-byte form of 23. We shall see in the next Unit the mechanics of this

way of representing numbers.

Check through the rest of the listing and make sure that you

understand how and why the memory addresses contain the values

they do,

SPECTRUM PROGRAM LISTINGS

The program below for the Spectrum has a different form from that for

the ZX81. This is a consequence of the strange results of the control

characters in the Spectrum character set if used as a CHR$ (see Unit

P2). We must avoid using a PRINT CHR$ instruction for these

control characters. The program sets a logical condition to test the

value of A in lines 60 and 70 which prints *‘CONTROL CHR”

instead of the CHR$ form if the printing of the CHR$ would cause

problems.
10 PRINT 23
20 PRINT 123E8
30 PRINT 123E-8

327

40 LET As (PEEK 2363 54*2 56*PEEK
23636)

50 PRINT A;TAB 10?PEEK A?TAB 1
5?

60 IF PEEK A>23 OR PEEK A<15 T
HEN PRINT CHR$ (PEEK A)

70 IF PEEK A<=23 AND PEEK A>=1
6 THEN PRINT nCONTROL CHRH

80 LET A=A4-1
90 GO TO S0

The results will be as follows. (Use scroll to see the full listing. To get a

printout like the one here, you must BREAK the program when

“Scroll?” appears, then use COPY, then CONT to get the next

screenful.)

33
1„33E+1©
1.23E-6
23755 © 7

23756 1© 7
23757 10 4
23758 ©
23759 24.5 PRINT
23760 5@ 2
23761 51 3
23762 14- "7

23763 0 o

23764- © 4

23765 23 CONTROL CHR
23766 © 7
23767 0 7
23768 13

23769 © o

23770 2© CONTROL CHR
23771 13

23772 ©
23773 24-5 PRINT
23774- 4-9 1

23775 5© 2
23776 51 3
23777 69 E
23778 56 a
23779 14- 7
23780 162 s
23781 55 7
23782 72 H
23783 198 AND
23784- 192 U5R
23785 13

23786 © 7

23787 3© 7
23788 14- 7
23789 © 6

2379© 24-5 PRINT
23791 4-9 1

23792 50 2

23793 51 3
23794- 69 E
23795 4-5
23796 56 8

23797 14- *7
23793 109 m
23799 37 %
2380© 22 CONTROL CHR
23801 122 z
23802 1©7 K
23803 13

The PEEKs in line 40 set A to the value of the first memory address of

the program storage area. (See the description of the System Variables

in the next Unit.) Unlike the ZX81 the Spectrum program area moves

around in memory.

After printing the numbers, in a revised notation, setting the

exponent values to have the decimal point after the first digit (a task

automatically done by the operating system) the program prints the

first address (23755), which is the first byte of the program area. It then

prints the value stored in this byte, followed by the character code (if

it’s not a control character). Codes not corresponding to a character

with a printed form produce a question mark.

The first two bytes hold 0 and 10. This is the line number, stored,

unlike all other two-byte numbers, with the more significant byte first.

The next two bytes hold the number of characters in the line, stored in

normal fashion, with the least significant byte first. We then have code

245, which is the keyword PRINT, the first instruction in the line. This

is followed by the characters 2 and 3, for printing in the program listing.

This is followed by code 14, which is a control code indicating that the

next 5 bytes are to be interpreted as a number. There are then five

bytes storing the number 23, in the special form in which the Spectrum

handles integers. We will deal with this in the next Unit. Notice that

the code 14 defines for the Spectrum the way in which a character or

number (stored in the same binary form in a memory byte) is to be

interpreted.

After the five bytes of the number comes the ENTER character (13),

signifying the end of the program line. Addresses 23772 and 23773 hold

the next line number, then comes the number of character bytes in the

line, and so on. Note that the number 123E8, which was input in this

form, is stored as this sequence of characters, even though it prints in a

different form, due to the operating system using the five-byte form to

decide what number is to be printed.

Trace the program further than the third line we have included in

the printout, and ensure you can follow the program line arrangement,

as we will refer to this in connection with a program to renumber

program lines automatically later in the text. Although the Spectrum

and ZX81 character codes are different, the program line arrangement

is the same.
Because we know that the*address at which a program listing starts

can be found, and the format of the program listing in memory, we can

use PEEK to extract data from a program line. This can be useful to

store data. Enter and run the program below. You should be able to see

how it works. Remember that the first character after the line number

(two bytes) and the line length (two bytes) will be the REM statement.

The characters to be PEEKed will follow this. 5 bytes therefore need to

be added to the start address of the program area.

The Spectrum user needs to use the PEEK expression to find the

start of the program (the address given by M);

10 REM RIALCNIS
20 LET M= PEEK 23635+256* PEEK

23636
30 PRINT AT Kb 10
40 FOR F=7 TO 0 STEP -1
50 PRINT CHR* PEEK (M+5+F>f
60 NEXT F

328 329

On the ZX81, the start of the program area is fixed. 5 can be added to

this to give the address of the first byte of memory we are interested in

(16509 +- 5 = 16514).

10 REM RIALCNIS
20 PRINT AT 10,10;
30 FOR F=7 TO 0 STEP -1
40 PRINT CHR$ PEEK (16514+F);
50 NEXT F

The reverse procedure is also possible, using POKE. Try this

program.

ZX81:

10 REM ABCDEFG
20 FOR F~0 TO 6
30 POKE (16514+F),29+F
40 NEXT F

Spectrum:

10 REM ABCDEFG
20 LET M=PEEK 23635+256*PEEK 23636
30 FOR F=0 TO 6
40 POKE (M+5+F) ,.48+F
50 NEXT F

The Spectrum program again uses a PEEK to find the program area

start address, and the different character codes require different values

added to F to give the same result.

Run the program, then LIST it and see what has happened to the

REM statement. If you want an illustration of the care needed when

POKEing into programs, try setting F = 0 TO 8 and run the program

again. LIST it, and then try to edit your listing. The ZX81 may crash,

and if your screen blanks out or produces other strange effects you will

have to reset it by pulling out the power supply plug and re-inserting it.

The Spectrum is more tolerant of this sort of treatment, and will just

give an error message, but the program listing is corrupt, and NEW

will have to be used.

Storing information in a REM statement in this fashion, given that

as you have seen it can be accessed with PEEK and updated with

POKE, can provide a useful alternative to storing data in variables.

The layout of the program listing in memory, starting at a known

address, enables us to write a program which will renumber the

program lines. Here’s the program for the ZX81:

1 REM H RENUMM
2 REM REPLACE LINE AND STEP

30 REM VALUES IF START LINE
45 REM OR STEP VALUE TO BE

DIFFERENT
50 REM RUN IN FAST MODE FOR

121 REM LARGE PROGRAMS
1001 REM **YOU MUST REMEMBER**
1002 REM ***GOSUBS AND G0T0S***
9000 REM ***RENUMBER***
9010 LET RAM=16509

9020 LET LINE=10
9030 LET STE P = 10
9040 POKE RAM,INT (LINE/256)
9050 POKE RAM+1,(LINE-256*PEEK R

AM)
9060 LET RAM=RAM+1
9070 IF PEEK RAMOH8 THEN GOTO

9060
9080 LET RAM=RAM+1
9090 IF 256*PEEK RAM+PEEK (RAM+1

)-9000 THEN GOTO 9120
9100 LET LINE=LINE+STEP
9110 GOTO 9040
9120 LIST
9130 STOP

Modifications for the Spectrum are required as follows: Line 9010

must be edited to read LET RAM = PEEK 23635 + 256" PEEK 23636.

Line 9070 must be changed to 9070 IF PEEK RAM013 THEN

GOTO 9060.

Line 9010 sets a variable RAM equal to the start of the program

area. LINE (the line number to start the new listing) and STEP (the

increment of the line numbers) are both set at 10, but could take any

desired values. 9040 and 9050 POKE into the first and second bytes,

which hold the line number, the value 10. Into the first byte goes the

line number divided by 256, the INT function turning this to an

integer value. If non-integer values are POKEd into an address, they

are automatically rounded, but to the nearest whole number, which

does not give us the desired result if the remainder is 0.5 or greater.

Into the second byte goes the line number less the value in the first

byte, obtained by PEEKing the byte and multiplying by 256.

Lines 9060 and 9070 increment the address and check if the address

contains the NEWLINE (ENTER) character (code 118 on the ZX81,

code 13 on the Spectrum), repeating until a new line is found, which

marks the end of a program line. 9080 adds 1 to RAM, giving the start

address of the next program line.

Line 9090 checks the value (line number) held in this and the next

byte, to see if the process has reached the start of the renumber

program, passing control to 9120 for listing if it has. 9100 increments

the line number by the step value and control is then passed back to

line 9040, and the new line number POKEd into the first bytes of the

next program line.

Notice that the program checks each byte in turn. Another way to

find the address of the end of the program line, which;prevents the need

for this, is to use the data about line length stored in the third and

fourth bytes of the program line. To do this, delete line 9080 and

replace lines 9060 and 9070 as follows:

9060 LET LENGTH - PEEK(RAM + 2) + 256*PEEK(RAM + 3)

9070 LET RAM = RAM + LENGTH + 4

This finds the line length, and adds this, plus 4 for the bytes holding

330 331

line number and line length, to the current RAM value, giving the

address of the first byte of the next line.

Remember, to use a program like this on the ZX81, you should

LOAD it before you start to program, and use RUN 9000 when you

have developed your program. You will also need a STOP instruction

before line 9000 to prevent your program renumbering itself every time

you run it. The REM statements are not necessary to the program in

the listing, of course, but do give the program something to renumber

as a test. Note that GOSUB and GOTO destination line numbers are

not renumbered, and you must edit the lines affected to suit the new

numbering. Take a printer listing or note down the relevant lines before

renumbering! On the Spectrum, a program can be MERGEd with one

already in memory, and added at any time. See Unit W2 for this

facility.

Loading useful programs, joined into a subroutine or sub-program

toolkit, is worthwhile if you are developing a large program. This

might include, for instance, a sorting routine, error message and

format subroutines. As with the renumber program, which is deleted

after use, any unwanted routines can be edited out.

A utility program like this should obviously have line numbers

9000 + , and the variables used should not be single letter variables, or

even variables such as A9, which might be needed in the main,

program.

The program “TOOLS” in the program library illustrates the

principle, and provides a basis for you to add further useful

subroutines. It incorporates a block deletion routine (also listed

separately), which enables easy deletion of any portions of the toolkit

program not required to be easily edited out. This includes the facility

to delete itself!

U3: System Variables

The system variables area of memory is a fixed area holding 125 bytes

(ZX81) or 181 bytes (Spectrum) of system variables. These occupy

either one or two bytes, generally, but exceptions include the variable

PRBUFF on the ZX81 (16444 to 16476), which stores 33 characters in

a line, ready for the printer (the printer buffer), the MEMBOT

variable on both machines, which is a subsidiary number store used in

conjunction with the calculator stack, and KSTATE and STRMS on

the Spectrum, dealing with the keyboard and Input/Output

respectively.

Single byte variables store a number between 0 and 255 decimal. A

two-byte variable holds a number between 0 and 65535. This is

because the number of bytes available is 2, hence there are 16 bits,

which can store 65536 values (0 is a value). To calculate a two-byte

value in decimal, which we must do because this is how values from

addresses are returned by the computer, we use (value of least

significant byte) + 256* (value of most significant byte). Except in the

case of line numbers for program lines, the first byte is the least

significant byte of any two-byte number.

The set of system variables we will look at are those variables which

hold the addresses of the boundaries between areas of memory. Since

some memory areas move around, the computer must know where

each area starts. We can also use this information to find out what the

current state of memory organisation is for use in various ways. Below

are tables of the ZX81 and Spectrum memory maps with the system

variables and their addresses. Note that the system variable names are

just mnemonics. They are not recognised by the computer.

ZX81: MEMORY MAP WITH SYSTEM VARIABLES

Memory Area System Variable Addresses Contents Returned by:

(Fixed) (16384)

(Fixed) (16509)

D-FILE 16396/7 PEEK 16396+256*PEEK 16397

VARS 16400/1 PEEK 16400+256*PEEK 16401

(Single byte containing CHR$ 128)
E-LINE 16404/5 PEEK 16404+256*PEEK 16405

STKBOT 16410/1 PEEK 16410+256*PEEK 16411

STKEND 16412/3 PEEK 16412+256*PEEK 16413

(Stack pointer-not accessible with BASIC commands)

ERR-SP 16386/7 PEEK 16386+256*PEEK 16387

RAMTOP 16388/9 PEEK 16388+256*PEEK 16389

The size of various portions of memory occupied on the ZX81 can be

found by entering (as direct commands) the following:

Program listing: PRINT PEEK 16396 + 256*PEEK 16397-16509

Program, variables, display file and system variables:

PRINT PEEK 16404 + 256* PEEK 16405-16384

Approximate memory left for program:

PRINT PEEK 16386 4- 256*PEEK 16387 - PEEK

16412 -256*PEEK 16413

System
Variables

Program
Listing

Display
File

Variables

Marked Byte

Work
Space

Calculator
Stack

Spare

Memory

Machine
Stack

Gosub
Stack

332 333

This returns only the approximate number of free memory bytes, since

it does not take into account the size of the machine stack, because we

cannot access the stack pointer. Actual memory is always less than the

value returned.

SPECTRUM: MEMORY MAP WITH SYSTEM VARIABLES

Memory Area System Variable Addresses Contents returned by:

User Defined

Graphics

Byte with Code 60

Byte with Code 0

GOSUB STACK

MACHINE STACK

SPARE MEMORY

CALCULATOR STACK

TEMP. WORK SPACE

Byte with Code 13

INPUT DATA

Byte with Code 128

Byte with Code 13

Current Line Keyed In

Byte with Code 128

VARIABLES STORE

BASIC PROGRAM

STORAGE

Byte with Code 128

CHANNEL INFO.

(Microdrive Maps)

P-RAMT 23732/3

UDG 23675/6

RAMTOP 23730/1

Not accessible with BASIC

Not accessible with BASIC

STKEND 26353/4

STKBOT 26351/2

WORKSP 23649/50

E-LINE 23641/2

VARS 23627/8

PROG 23635/6

CHANS 23631/2

Fixed (23734)

PEEK 23732 +256*PEEK 23733

PEEK 23675 +256*PEEK 23676

PEEK 23730 +256*PEEK 23731

PEEK 26353 +256*PEEK 26354

PEEK 26351 +256*PEEK 26352

PEEK 23649 +256*PEEK 23650

PEEK 23641 +256*PEEK 23642

PEEK 23627 +256*PEEK 23628

PEEK 2,3635 +256*PEEK 23636

PEEK 23631 +256*PEEK 23632

Note that various marker bvtes are used to separate areas of memory,

as indicated. Program length (listing only) is given by (PEEK

23627 + 256*PEEK 23628) - (PEEK 23635 + 256*PEEK 23636), i.e.

VARS less PROG. Program and variables memory requirement is

given by E-LINE less PROG, with the PEEKs required again as given

above. All memory areas below 23734 are fixed, with their addresses

being as given in the previous Unit (see the Memory Map diagram).

Without the microdrive, CHANS will be fixed at address 23734. An

alternative method of determining free memory left on the Spectrum is

to use the following, which uses a routine in the ROM memory. The

number of bytes of free memory i.e. the size of the spare memory

section, is given by PRINT 65536 - USR 7962.

We can use the system variable VARS to determine how numbers

are stored in the computer. Each different type of variable needs to be

identifiable as the correct type, i.e. as a loop control variable, as a

string variable, etc. This is done by altering the first three bits in the

appropriate letter codes. (Bits in a byte are actually numbered right to

left, starting from 0. In the eight bit byte 00100000 , for instance, bit 5

is set as 1. Bits 5, 6 and 7 in the byte are the ones referred to above.)

On the Spectrum, all letters in variable names are taken as lower

case. These letters all have bit patterns starting 011. ,. , codes being

97 to 122. The ZX81 letter codes all start with bits 001 ... , codes 38

to 63. Check the binary equivalents of the letter codes to confirm this.

Since these three bits are always the same, the computer can alter them

as a signal to indicate which type of variable is being called by a

particular variable name, which may be the same as the name of some

other type of variable (e.g. A as a simple variable, A(5) as an array

variable, A$ as a string variable). The patterns of bytes used are as

follows:

Single character variable 011

Multiple character variable 101

Loop control variable 111

String variable 010

Numeric array variable 100

String array variable 110

Because the codes for the letters have different values on the ZX81 and

Spectrum, the effect on the value stored in the byte is different. After

we’ve discussed exploring the ways variables are stored, the form for

each type of variable is given, with the change in the letter code noted

for both the ZX81 and Spectrum.

The next program inputs a value for the numeric variable A. This

will be entered into the VARS area as the first variable stored. Line 30

PEEKs the value of the VARS system variable, and adds the value of

the loop variable F, then PEEKs this address. The first value returned

by the expression in brackets (F - 0) is the address of the first byte of

the variables store. For a numeric variable on the ZX81, this holds the

name of the variable, stored as its Code + 64, if the variable name is a

single character. On the Spectrum it is stored as the code of the lower

case letter, unchanged. Key in the program and input various numbers.

10 INPUT A
20 PRINT "A=";A
30 FOR F= 0 TO 5
40 PRINT PEEK(PEEK 16400+256*P

EEK 16401 +F)
50 NEXT F
60 GOTO 10

334 335

Spectrum users: change the PEEK expression to:

40 PRINT PEEK (PEEK 23627 + 256*PEEK 23628 + F)

Input 1.5. The display will be like this:

ZX81 Spectrum

A= 1.5 A= 1.5

102 (= Code A +64) 122 (= Code of lower case a)

129 (5 byte number follows) 129 (5 byte number follows)

64 64

0 0

0 0

0 0

Change the variable name in line 10 to confirm the code. The first byte

of the 5-byte number is the exponent byte, the following four are the

mantissa, the number the exponent acts on to get the numeric value.

The Spectrum has a special form of this for integers. (See below for

more on numbers.)

Change the variable name to, for example, AB5, or other variable

names with more than a single letter in the name, and run the program

again. You can then confirm that numeric variables are stored in these

forms:

Single Character Variable

1 byte 5 byte number >

(S = Spectrum)

Multiple Character Marne Variable

First character and last character only are stored as code plus values

indicated. Other characters are stored as the standard character codes.

The other forms of variable are stored in the byte sequences shown

below. Write programs to confirm these memory arrangements. You

will need a loop that prints the correct number of bytes. The FOR-

NEXT sequence, for example, which takes 18 bytes, can be simply

programmed by deleting lines 10, 20 and 60 in the program above, and

changing the loop to 0 TO 17.

336

The control character is stored as code + 192 on the ZX81, + 128 on

the Spectrum. The value is incremented or decremented by the step

value each time the NEXT instruction is executed, and the value

checked against the limit value after each such change. The line

number (stored as more significant byte first, as are the program line

numbers) is the line number of the FOR...TO instruction plus 1, as

this is the destination line for the NEXT instruction to jump to.

The single letter name is stored as the code less 32 on both the ZX81

and Spectrum. The number of characters is what is read by the LEN

instruction. For a null string, this is zero, and no character bytes are

stored.

Notice that an array such as A(7) is a single dimensioned array. (It will

require l + 2+ l + 2 + (7*5) = 41 bytes.) The bytes storing the size of

each dimension enable the computer to keep track of a multi-

dimensioned array stored in a linear sequence. For example, DIM

A(3,3) sets a sequence of the eight data bytes, plus 9*5 bytes to hold:

Work out how a 3-D array, say A(2,3,4) will be stored.

337

String Array Variable

1 byte 2 bytes 1 byte 2 bytes J— 2 bytes 1 bVte j >er chr.

Code
+ 160 ZX81

Ho. of bytes

following

Ho. of
dims.

Size of first

dim W Length of
strings t

Code

+ 96 S / 1 1 1

You should now see why string arrays must have fixed length strings,

since otherwise the computer could not use the length of string datum

to step through the linear sequence to find the appropriate set of

character codes making up an element in the array.

The next manipulation we will look at concerns the way the ROM

memory holds the characters to be printed on the screen.

Starting at address 7680 on the ZX81, and at 15616 on the

Spectrum, each character is held in a sequence of 8 bytes of memory.

The binary number of each byte represents, in this case, a sequence of

0’s and Ts, which hold the pattern of the character, corresponding to

the 8x8 grid of points in each character cell on the screen which is used

to print a character.
If we take the letter A, for example, it is represented like this:

DECIMAL BINARY

NUMBER NUMBER

0 00000000

60 00111100

66 01000010

66 01000010

126 01111110

66 01000010

66 01000010

0 00000000

A zero is read as an instruction to leave blank the corresponding point

on the screen, and a 1 indicates it is to be blacked in.

The following program will illustrate the principles. It takes one of

the 8-byte sequences of numbers stored in ROM and gives the decimal

and binary forms of these numbers. The pattern of ones can be seen.

Remember Decimal 0-255, Binary 00000000 to 11111111, is held in

each byte. The relevant portion of memory is accessed by using the

code of the character concerned. Starting at address 7680 on the ZX81,

the first of the addresses for any character is given by 7680 + CODE

(Character)*8. The eight addresses are then PEEKed one by one, and

the decimal number given then the binary form printed out. Lines 110

and 130 convert the decimal to binary and print it.

Whilst the Spectrum characters are held at a specific address in

ROM, the system variable CHARS, which is at addresses 23606 and

23607, holds the start address of the character memory sequence, and

can be POKEd with different values to start the sequence elsewhere in

memory. This can be used to define a new start point for the character

set in RAM, and define a whole new character set on the Spectrum, in

addition to the facility for user-defined graphics (which will be dealt

with in Unit W2). CHARS returns a value which is the start address of

the characters, less 256. The character set that is stored in ROM starts

with the Space symbol (code 32) and runs in sequence to © (code 127).

To access the right sequence in ROM, we must use the start value

given by CHARS, which is 15360, plus the character code multiplied

by 8, just as on the ZX81. The fact that CHARS points to 256 bytes

below the start of the printable character set adjusts for the fact that the

first character that can be accessed has code 32 (since 32*8 = 256).

For the program below, therefore, Spectrum users need to put LET

A = 15630 in line 10, which is the normal value given by PEEKing the

CHARS system variable, and the right address in ROM is accessed.

10 LET A=7680
20 PRINT ”INPUT A CHARACTER”
30 INPUT A$
4 0 C LS
50 LET C =C0DE A$
60 LET D=8*C+A
70 FOR X"0 TO 7
80 LET L^PEEK (D+X)
90 PRINT D+X;TAB 6;L

100 FOR Z =18 TO 11 STEP -1
110 PRINT AT X, Z;L*~2*INT (L/2)
130 LET L=INT (L/2)
140 NEXT Z
150 NEXT X

If we add:

120 IF L - 2*INT (L/2) - 1 THEN PRINT

AT X,Z+ 10;

we can print out a large version of the character. The routine will only

work for the standard characters and graphics (codes 1-63 on the

ZX81). Inverse characters and functions on the ZX81 are not held in

this form. All Spectrum characters up to code 127 can be accessed.

We can use this principle to produce any size character we want,

within the limits of the screen.

The next program allows a string of up to 4 characters to be printed

out. You should be able to follow the same steps in this program as in

the previous one - the method is essentially the same, working on a

string of characters, rather than a single character, and only using the

print routine. To fit 3 lines of 4 characters (which would take 24 lines)

we neglect the first (top) byte, since this is blank for all the letters and

numbers. This lets us fit 3 lines in, but graphics characters will look

strange, since they do use the top line. A different method is used to

read out the binary values for printing. To avoid complex

manipulations of PRINT AT values, which would be required if we

338 339

used the system in the previous program, each line of the ROM is

checked for each character in turn across the line, which enables a

continuous PRINT operation.

Each binary value is checked in turn to see if it is 0 or a 1 by doubling

the value of X (line 180), so that it is either >128 (1) or <127 (0). Line

150 takes 128 away if a 1 is found. If you do not understand this

process, take any binary number and trace the operation through lines

120 to 190.

■5 REM "BIGF'RINT"
6 REM #ALLOWS 3 LINES OF 4 ft

^CHARACTERS BY OMIT- *
ftTING TOP LINE(BLANK *
ftFOR LETTERS AND *
ftNUMBERS) OF 8*3 GRID*

10 DIM AC4)
20 PRINT "INPUT STRING (MAX 12

LETTERS/NUMBERS)"
25 INPUT A$
30 CLS
Otr REM *F0R EACH LINE*
40 FOR F=1 TO 3
45 REM *GET CODE INTO ARRAY *

*F0R EACH LETTER ft
50 FOR L=i TO 4
60 LET A(L)= CODE A$CL)
70 NEXT L
75 REM *UPDATE A$*
80 LET A$=A$(5 TO)
85 REM ftBYTES 1 TO 7 OF ft

^CHARACTER IN ROM *
90 FOR B=1 TO 7
95 REM ft FOR 'EACH LETTER OF ft

ftLINE *
100 FOR C=1 TO 4
105 REM *0ET BYTE VALUE*
110 LET X= PEEK C7680+A(C)*8+B)
115 REM *FOR EACH BIT*
120 FOR V=0 TO 7
125 REM *IF ZERO THEN JUMP*
130 IF X <128 THEN GOTO 170
140 PRINT "B"!
145 REM ^DECREMENT CHECK *

*VALUE ft
150 LET X=X-128
160 GOTO i 180

170 PRINT " "?
ISO LET X=X*2
185 REM *NEXT BIT*
190 NEXT • V
195 REM ftNEXT LETTER OF LINE*
200 NEXT ‘ C
205 REM ftNEXT BYTE OF ROM*
210 NEXT ' B
215 REM ftNEXT GROUP OF 4*
220 NEXT • F
230 REM ft*END**

Spectrum users must insert 15360 in place of 7680 in line 120.

The program, “HEADLINER” in the program library, uses the

character array in ROM to print banner headlines on the printer. If

you inspect this program, you will see that it has a method of enabling

the inverse characters of the ZX81 to be printed by changing them into

normal characters (using CHR$(CODE A$ - 128)) to access the

pattern in memory, then reversing it again when it comes to print it.

RAMTOP may be set to a lower value to give memory space outside

that usually used by the operating system. This has an application

which is occasionally useful on the ZX81, regarding the use of CLS

after SCROLL has been utilised. This does not apply on the Spectrum.

Clearing the screen can take a long time after scrolling. Try this to

illustrate:

10 FOR F = 1 TO 30

20 SCROLL

30 PRINT “XXXXXXXXXXXXXX’5

40 NEXT F

50 CLS

This is due to the fact that SCROLL interferes with the way the display

file is set up on a ZX81, with more than 3.25k of RAM available - with

a full screen of spaces where no characters exist. A PRINT line after

SCROLL is just the required length, with nothing filling up the line if

there are no characters. To clear the screen, the ZX81 counts up 24

new lines, then inserts spaces to recreate a full display file. If less than

3.25k are available, an empty screen is just 24 newline characters.

RAMTOP is set with 0 in address 16388 and 128 in 16389 on switch-

on (0 + 256*128 = 32768, the address of the first non-existent byte).

POKEing values to set RAMTOP below 19634 (16509 + 3.25k) will

set up the minimal display file and CLS will act instantly. Your

program must be less than 3.25k (say 3k as returned by the commands

given above). The convenient value to use is 76 poked into 16389. This

sets RAMTOP as 0 (value of 16388 unchanged) + 256*76= 19456,

which is rather more convenient than POKE 16388,76 followed by

POKE 16389,177 (177 + 256*76 = 19633). Insert 45 POKE 16389,76

into the program above and run it again. Note that if you NEW the

program and then key in PRINT PEEK 16389, you will still get 76.

RAMTOP must be re-set by POKEing the correct value (128) or by

switching off and on again to re-set.

On the Spectrum, RAMTOP is moved using CLEAR. The

instruction CLEAR (N) resets RAMTOP to the address given by N.

RAMTOP is reset to this value, and remains at this address until reset

by CLEAR (or switching off and on again.) It is not reset by NEW.

The procedure given below for storing data above RAMTOP is less

useful than it is on the ZX81, because the Spectrum can MERGE a

program with another LOADed in from tape (see Unit W2). This

340 341

program can be mostly data (although it must have program lines).

However, this method will work on the Spectrum, and shows the

technique of moving information around in memory. If you progress to

machine-code programming, this is one way in which you can store

machine code.

RAMTOP may be moved so as to reserve space at the top of

memory. On the ZX81, this area will not be affected by NEW or

CLEAR, or the automatic NEW that occurs with LOAD. It can be

used to store data for use by another program, after the data have been

defined by a previous program. This procedure, available with less

complications on some computers, is performed as follows on the

ZX81.

i) New values are POKEd into the RAMTOP system variable, so

that the system considers the top of RAM to be lower than

address 32767. This reserves space above the new RAMTOP

value. NEW is then used. POKEing RAMTOP has no effect

until NEW has been used. How much space is reserved depends

on the number of bytes of data we require to store. (Spectrum:

See above for resetting RAMTOP.)

ii) The program to use the data must have been written and stored

on cassette. This has instructions to copy into the variables area

the data stored. It must initialise the same variables or arrays for data in

the same sequence as the program which provides the data.

iii) The program to store the data intialises the arrays or variables

for the data first, before any other variables. The program is then

run. The required number of bytes are taken from the start of

the variables area (found using VARS), and copied to the area

above RAMTOP (found using RAMTOP).

iv) Program 2 is then loaded. It initialises the variables as did

program 1, finds VARS and RAMTOP, and reverses the

procedure, PEEKing RAMTOP and POKEing the values

found into the variables area. It can then proceed to use the

data.

The amount of memory needed for storage is calculated from the

information given above about the method of storage of variables. As

an example, let us assume we want to store an array D(20) for use by

another program. We will use this as a short example program. In

practice, the technique will require a second program to use the data to

have been written and SAVEd, but the examples are short enough to

key in.

Reference to the information about variables shows us that an array

D(20) requires 106 bytes. On a ZX81, we must set RAMTOP as

32768 — 106 = 32662. This is the address of the first non-existent byte,

and will be the address of our first storage byte. To set RAMTOP to

this value, we POKE 16389,INT(32662/256) as a command, followed

by POKE 16388,32662 - 256*INT(32662/256). Of course you could

use the computer to work these out beforehand, and POKE the values

directly. NEW the computer, then enter this program and run it. On

the Spectrum, RAMTOP is set with CLEAR, and can be done simply
by using:

CLEAR (PEEK 23730 + 256*23731 - 106)

5 REM "DSTORE"
10 REM **DATA ABOVE RAMTOP**
20 DIM D(2 0)
30 FOR F-1 TO 20
40 LET D(F)= F*F
50 NEXT F
60 LET VARS=PEEK 16400 + 2 56*PEE

K 16401
70 LET RAMTOP-PEEK 16388+256*P

EEK 16389
80 FOR F=0 TO 105
90 POKE (RAMTOP+F),PEEK (VARS+F)

100 NEXT F

The first active line (20) dimensions the storage array. The loop of lines

30 to 50 merely insert some values into the array. Lines 60 and 70 find

the values of VARS and RAMTOP. The loop of lines 80 to 100 stores

each byte of the variables store that contains array D above

RAMTOP. Spectrum users must insert the correct PEEKs in lines 60

and 70 to get the values of the VARS and RAMTOP system variables.

The same must be done with the data retrieval program below.

Now use NEW, and enter the program to retrieve the data. This

reverses the procedure. After initialising D(20), and finding VARS

and RAMTOP, it POKEs the value of each byte stored above

RAMTOP into the bytes of the variables area containing the array.

Lines 70 to 80 print out the array values.

1 REM "DFETCH”
5 REM **RETRIEVE STORED DATA

FRQM MEMORY ****
10 DIM D(20)
20 LET VARS=PEEK 16400+256*PEE

K 16401
30 LET RAMTOP=PEEK 16388+256*P

EEK 16389
40 FOR F=0 TO 105
50 POKE (VARS+F) ,PEEK (RAMTOP+F)
60 NEXT F
70 FOR F=1 TO 20
80 PRINT D(F)
90 NEXT F

On the ZX81 only, you can use CLEAR: the array will be wiped from

memory, but remains safe above RAMTOP. Running the program

again will retrieve the data once more. This is obviously a technique

useful not only for passing data between programs, but also for

allowing CLEAR to be used and still having current data (i.e. that not

342 343

assigned by LET statements) preserved. This does not apply to the

Spectrum, since CLEAR re-sets RAMTOP.

The complete list of system variables for both the ZX81 and the

Spectrum is given in Appendix V. The timing variable FRAMES is

used in the “REACT'’ program analysed in Unit V3.

MORE ON NUMBERS AND COMPUTERS

The way in which numbers are manipulated by the operating system in

a computer does not concern us here, but the way numbers are held,

and their form, are important in computing, even if the precise manner

in which calculations are carried out is a separate topic. We will deal

here with enough detail of the binary system to enable 5-byte floating

point to be understood.
We briefly introduced the binary system earlier. To explain further

the use of a system using powers of 2, and how any number can be

represented to a certain level of accuracy, key in this program:

10 REM "POWERS OF TWO"
20 PRINT "POWERS OF TWO"
30 PRINT —--—"
40 PRINT "2**N";TAB 10;,,N,,;TAB

16?”2** -N"
50 PRINT
60 PRINT TAB 6;H1 0 1*0”
70 FOR F=1 TO 16
80 PRINT TAB (j 17-LEN STR$ (2**F

));2**F;TAB 10;F?TAB (14+(F
>3))?2**-F

90 NEXT F

(Replace ** by f for the Spectrum at each occurrence in the program).

You will get a display like this:

accurately represented in the decimal system, however many decimal

places are used. The same goes for many numbers in both decimal and

binary notation. If you study the display it should be apparent that

with the binary system, only numbers equal to certain decimal values

are accurately represented. Decimal .6875, equal to 1/2 + 1/8 + 1/16 is

accurately represented by binary .1011, for example, but with a single

byte (8 bits), any number varying by .001953125 (2 9) above or below

the value represented in the byte will appear the same to a computer

reading this byte.

To increase the accuracy of representation of numbers, a larger

number of bytes is needed. This also allows larger numbers to be dealt

with. The ZX81 and Spectrum use “5-byte floating point”

representation of numbers. The “FLOAT” program gives the decimal

value held in each byte of the five by PEEKing the variables area:

1 REM *FLOAT#
2 REM PRINTS FLOATING POINT
FORM OF A NUMBER

10 PRINT "ENTER A NUMBER"
20 INPUT N
30 PRINT "THE NUMBER ujNi" IS

HELD"?"IN THE ZX81 ASs-"
40 FOR F=1 TO 5
45 REM PEEKS START OF VARIABLE

STORE (VARS) AREA IN MEMORY
50 PRINT PEEK (PEEK 16400+256

* PEEK 16401+F)?" "?
60 NEXT F

On the Spectrum you should change Line 50 to read PRINT PEEK

(PEEK 23684 + 256*PEEK 23685 + F). Input only non-integer values

(we’ll explain why this is the case a little later).

If you input 2.4, you will get a screen display of:

POWERS OF TWO

N 2-£-£ —N

1 © i„e
2 1
4 a 0 „ 25
© 3 ® . 125

16 4 .0625
32 5 .03125
©4 © ,015655

128 7 .0078125
as© 8 ,00390625
512 9 .001953125

1024 1© .0009765625
204.8 11 - 0004-3823125
4©9© ia .00024-4-14.063
819a 13 .00012207031

16384 14 ,000061035156
33768 15 „©©©©30517578
6SS3© 1© - 000015258789

Notice that we have positive powers of two on the right, giving integer

values, and negative powers, giving fractions which are represented as

‘decimal decimals’. The emphasis in the comment above about

accuracy stems from the fact that there are limits to the accuracy

obtainable with every number system. The fraction 1/3 is never

130 25 153 153 154

Try other numbers. There is no obvious pattern to the decimal values,

other than the first number not varying much from around 128 unless

you input very large or small numbers. This is the exponent byte (as with

the E notation). The next program, “FIVEBYTE”, displays the

mantissa number (the other four bytes) in decimal and binary form,

and the exponent byte in decimal form:

10 REM "FIVEBYTE"
20 PRINT "INPUT NUMBER"
30 INPUT N
40 PRINT "NUMBER="?N
50 LET EXP= PEEK U+ PEEK 1640

0+256# PEEK 16401)
60 PRINT "EXPONENT”"? EXP
70 LET P=EXP-128
80 IF P <> -128 THEN PRINT "2

";p;"=";2 ## P
90 IF EXPO THEN PRINT "USED F

OR ZERO ONLY"

344 345

100 PRINT "MANTISSA BYTES8 -"
110 FOR F=2 TO 5
120 PRINT TAB <F-2>*8? PEEK <F+
PEEK 16400+256# PEEK 16401)?
130 NEXT F
140 FOR F“2 TO 5
150 LET D= PEEK <F+ PEEK 16400+

256# PEEK 16401)
160 LET B$=""
170 LET L= INT (D/2).
180 REM LET A$=<”1” AND D-2*L>+

("0" AND D-2*L=0)
181 LET A$= STR$ <D-2*L)
190 LET B$=A$+B$
200 LET D=L
210 IF D>0 THEN GOTO 170
220 IF LEN B$<8 THEN LET B$*w00

000000”C1 TO (8- LEN B$))+B$
230 PRINT TAB <F-2)*8iB*
240 NEXT F

(Once again, on the Spectrum change ** to f at every appearance.

Line 50 needs to be changed to read LET EXP = PEEK (1 + PEEK

23684 + 256*PEEK 23685) to give the start of the Spectrum variables

area. Change 16400 to 23684 and 16401 to 23685 in lines 120 and 150

also.)

A number stored in 5-byte floating point notation has an exponent

byte, which acts, as with the decimal E notation, to shift the binary

point along to the correct place.

The exponent value is stored as exponent plus 128, and can hence be

negative or positive. It works in powers of two, and the value of this

(exponent raised to the power of two) is given in the program. The

representation of zero has a special form, such that the exponent is 0,

and the values of all the other bytes is also zero. The value stored in the

exponent byte is thus between 1 and 255, giving possible exponent

values between - 127 and -1-127. The range of numbers covered is

then what would be presented if our ‘ TOWERS OF TWO” program

went on to 127 rather than just 16.

The mantissa value (represented in the next four bytes) is converted

to the numeric value by multiplying it by 2 raised to the power of the

exponent: N = M*2e, where M is the mantissa value and e is the

exponent (value stored in exponent byte less 128). This process can

also be considered as moving the binary point the number of bits given

by the exponent.

The mantissa bytes are considered as a single sequence of binary

digits, with the binary point at the beginning. The program gives the

values stored in each byte (as with the ‘‘FLOAT’’ program), and then

converts to binary to give the mantissa sequence. Since the first bit of

the mantissa sequence is always 1 (the mantissa is always between .5

decimal and 1 decimal, but never reaches 1, i.e. 0.5< = m<l) the first

bit is used as a sign bit. If the number is positive, the first bit is changed

to 0. If it is negative, the first bit is set to L This is used as a means of

handling negative numbers, since all the numbers generated in the

floating point notation are positive, and an equivalent to the * - * sign is

needed to show negation.

Input 0.75 into the computer when prompted. The display will be
like this:

INPUT NUMBER

NUMBER = 0.75

EXPONENT = 128

2**0 = 1 (fon Spectrum)

MANTISSA BYTES:

64 0 0 0

01000000

The evaluation is as follows. The first bit is a zero in the mantissa. This

indicates a positive number. The first bit is changed to a 1, and the

value of the mantissa is now . 11000.. .0. The trailing zeros are ignored.

Binary .11 is decimal 0.75 . The exponent value is 0, and 2 raised to

the power 0 is 1. So we have a value of 0.75*1 =0.75. If you input

- 0.75, the display is identical except for the first mantissa byte (+ 128)

because of the first bit now being 1, and the first mantissa bit, changed

to 1 to indicate a negative number. This is left as 1, and evaluation

then proceeds as before.

Now input 3.75. The exponent is 130, 2**2 (fon Spectrum) is 4,

and the mantissa bits hold the sequence 01110... The first bit changes

to 1, and this gives .1111 binary, 0.9375 decimal. 4*0.9375 = 3.75 .

The alternative way of viewing the process is to consider the exponent

as moving the binary point along. In this example, we have the

sequence .1111, and since the exponent value is 2, the binary point

moves the same number of places to the right, to give 11.11 , which is

3.75 in decimal. In the previous case, with 0.75, the exponent value

was 0, so the point was not moved, and the bits were .11 . Negative

exponents move the binary point to the left, adding zeros.

The Spectrum has a special representation for integers in the range

+ 65535 to - 65535, in which the first byte (exponent byte) is zero, as

is the fifth byte. The second byte acts as a sign byte, holding 0 if the

number is positive, and 255 if the number is negative. The third and

fourth byte hold the number (least significant byte first). You can use

the WFIVEBYTEM program to investigate this representation if you

are using a Spectrum.

To illustrate rounding errors and an otherwise puzzling aspect of the

representation of numbers, input 1/2 into the “FIV EBYTE”

program. We get exponent byte = 128, exponent 128 - 128 = 0, and a

zero in the first bit. This changes to a 1, and we have . 100.... Exponent

is zero, so we don’t move the binary point and get .100_, which is

346 347

0.5, and equal to a half. Thus far all is well. If we like, we can consider

that we got . 100.... and multiplied it by zero to get our half. As we said

above, the two processes are identical. But now input 0.5. This should

be the same, but instead we get exponent equalling 127, and 0111....1

(thirty-one l’s)! We seem to have an error. However it is a pretty small

one, though it explains why the computer rounds its numbers. To

avoid considering K as not equal to 0.5 it has to take into account the

fact that the decimal to binary conversions have these inaccuracies.

Binary addition of two l’s causes a 0 to be placed in that byte, and a 1

is placed in the next column to the left. (If you’re interested, the other

rules for addition are: 1 and 0 give 1, 0 and 0 give 0, three ones (1, 1

and a carried 1) give 1, carry 1 to next column on the left. Try a few

simple sums!) This means that if a 1 is added to the least significant bit

of our sequence of ones:

.1111

1

0

1 (carry)

0

1 (carry)

0
1 (carry)

etc

all the l’s will become zeros, and the last carry would put 1 in the first

bit, which would make it the same representation as the Yi sequence,

but this also has a 1 in it. This forces a carry to a non-existent bit to the

left of the mantissa. This gives us 1.0 as our binary, and the exponent

shifts this (exponent - - 1) to .100...., which is correct. Or we can

consider this as 1.0 binary (1 decimal) multiplied by 2^0.5). So the

error is in the least significant bit. The size of the error is thus 2-33, the

value of the right-hand 1. This is fairly small! The computer rounds

numbers to ensure these inaccuracies do not cause errors. It considers

numbers equal if the difference between them is less than a certain

amount. Rounding errors can still build up under some circumstances,

however, and it is important to note that no computer performs totally

accurate arithmetic, except with integer values.

You may be a little overwhelmed by numbers at this point, but

before we give them a rest we should introduce you to another

numbering system - Hexadecimal.

This is another numbering system much used in computing,

although it has no practical application for us at present since the

Hexadecimal system (often abbreviated to Hex) is primarily used in

machine-code programming which is beyond the scope of this text.

Whereas binary is base 2, and decimal base 10, hexadecimal is base 16.

This is a convenient system for computers using 8-bit words, since

16 x 16 = 256. Any value which is held in a single byte can thus be

represented by a two-digit hexadecimal code. The system uses the

digits 0 to 9, and goes on with A, B, C, D, E and F, to represent the

numbers 1 to 16. Here is how the system counts:

Decimal Hexadecimal

0 0 (0 x 160)
Cl X U?) 1 1

9 9 (9 x 1601
10 A (10 X

16?
16^) 11 B (11 X

15 F (15 X 16?)

16«>
16^)

16 10 (1 X 16}) + (0 X

17 11 (1 X 161) + (1 X

25 19 (1 X 16?) (9 X
i6S>
16W) 26 1A (1 X 161) (10 X

31 IF (1 X 16}) + (15 X w{)
32 20 (2 X 161) -f- (0 X

154 9A (9 X 16}) + (10 X
l»i>
16w) 155 9B (9 X 16; + (11 X

159 9F (9 X 16}) -f (15 X 1‘S>
16s9) 160 A0 (10 X 161) -f (0 X

250 FA (15 X 161) -f (10 X 16*)

254 FE (15 X 16}) + (14 X 16*>
16W) 255 FF (15 X 161) (15 X

As with any number system, we could go on (256 is 100 hex, etc.), but

the use of hexadecimal is in representing binary numbers in a more

convenient form than strings of l’s and 0’s, which are difficult to read

and easy to make mistakes with (unless you are a computer!).

The advantage of hexadecimal notation is that any 8-bit binary

number is convertible to hex far more easily than into decimal, due to

the relationship of base 2 and base 16 numbers. Base 16 is base 24, and

348 349

this means the 8 bits of a byte can be divided into two sets of four bits

(remember 1111 binary =15 decimal = F hex) and converted to the

corresponding two hex digits. For example, the number 116 decimal is

in binary 01110100. Split into two groups of four bits, 0111 and 0100,

we convert each group to a hex digit.

0111 binary (7 decimal) is 7 hex

0100 binary (4 decimal) is 4 hex

The number in hex is 74. Check this: (7 x 161) + (4 x 16°) = 112 + 4 = 116.

Again, 93 decimal is 01011101 binary:

0101 binary (5 decimal) is 5 hex

1101 binary (13 decimal) is D hex

The number in hex is 5D. (5 x 161) + (13 x 16°) - 80 + 13 = 93

To avoid possible confusion when both hexadecimal and binary

numbers are being used, a small h should be used after a hexadecimal

number. Our examples above would be 74h and 5Dh. Hex numbers

are grouped in twos, and the leading zero should be used for numbers

less than 16 decimal, so that 12 decimal should be written 0Ch, and not

C or Ch.

Similarly, numbers up to 65535 decimal (held in two bytes of

binary), are representable with four hex digits. 11111111111111111

binary is thus FFFF hex, 10101101001101110 is 1010 (A)/1101

(D)/0011 (3)/l 110 (E): AD3Eh. Work out the value of this in decimal.

The program library has programs which convert decimal to hex and

vice versa (“HEXDEC” and “DECHEX”). Analyse these programs

to see how they work. The CODE and CHR$ functions are used to

check the hex notation, or produce it.

Exercises

1 Alter the “CHROM” program to print just the large character,'

and then the inverse form next to it, by reversing the printing

instructions for the character to be printed when a 0 or 1 is found

in the binary form.

2 Using the “BIGPRINT” program as a basis, store the charac¬

ters of each line of the large characters in an array, so that a

scroll routine can be used to cause the message to disappear off

the top of the screen line by line, and re-appear at the bottom.

3 Write programs to store a string array above RAMTOP, and

then retrieve it. Use a three-dimensional array.

350

PART FOUR

APPLICATIONS PROGRAMS AND
GAMES

SECTION V: APPLICATIONS PROGRAMS

VI: Programming for Applications

You have been introduced to the full set of ZX81 BASIC instructions.

Spectrum users have some additional instructions in the Spectrum

superset of BASIC, but we have attempted to show how all necessary

operations can be performed on the ZX81 and the Spectrum merely

makes some operations easier to implement. We have covered a range

of operations, involving loops, lists, array manipulation, sorting,

subroutines etc., and the implementation of control structures. These

are the raw material of programming. The combination of what you

have learned about algorithms, design, program structures,

manipulations and methods with the task you wish the computer to

perform produces an applications program.

There are no rules to derive algorithms. If there were, they could be

coded into a master program that would write our programs for us! We

have illustrated ways of thinking about a problem that can help, but

each program we wish to write presents a unique problem. Familiarity

with the language and control structures, and with existing solutions to

a variety of problems, either other people’s or your own, make it easier

to program. As with most things, the art and craft of programming

becomes easier with practice. The importance of keeping notes about

programs you have written, and on solutions to problems you have

found in analysing other programs, is that it will prevent you re¬

inventing the wheel. As you write more programs for yourself, you will

find that you come to recognise the method (or methods - there is

seldom only one way to perform a given task!) by which you can

implement and code each module of your program.

Modular, structured program design methods help to break down a

programming problem to these recognisable chunks, and you will

recognise more aspects of a problem as having been met (and solved!)

before as you gain experience.

You will also become familiar with the types of data structure

required in a program to make it possible to manipulate the data

efficiently, and grasp more quickly and clearly that, for example, a

given set of data is more efficiently (i.e. easily) handled in a multi¬

dimensional array than in separate lists, or that a similar routine in

different program modules could be handled by a single subroutine if

suitable variables were initialised before calling the subroutine.

Experience cannot be transferred, and there is no substitute for

practice, but examples can be given. After the important topic of

writing user-friendly programs has been dealt with in the next Unit, we

give examples of programs written to perform specific tasks, to

illustrate the process of designing applications programs. Games

programming is briefly dealt with in the following Units, since games

353

are a good testing ground for problem-solving and programming

techniques.

V2: Instructions and Input Checks

If you have written your own program, you know which inputs the

program requires, in what form and when. You know, for example,

that when ‘‘ANOTHER GO?” appears on the screen, you must press

the Y key to run the program again.

Now consider what happens if someone else wishes to use the

program (or if you return to it after some weeks). There is not enough

information available to the user. The term user-friendly is applied to

programs which have sufficiently clear and precise instructions to tell

someone who has never seen the program running exactly what to do.

We should always attempt to make our programs at least reasonably

user-friendly. To continue the example of running a program again,

the line:

60 PRINT “AGAIN?”

could be followed by

70 INPUT A$

80 RUN

or

70 IF INKEY$ = “ ” THEN GOTO 70

80 RUN

or

70 IF INKEY$ = “ ” THEN GOTO 70

80 IF INKEY$ = “Y” THEN RUN

or

70 PAUSE 40000

80 RUN

These need different responses. We should use for the first “PRESS

NEWLINE (ENTER) TO RUN AGAIN’’, for the second and fourth

“HIT ANY KEY TO RUN AGAIN”, for the third “AGAIN?

(PRESS Y OR N)” or similar instructions appropriate to the program.

We can assume that the user recognises that an input prompt

requires string or numeric input, according to its form, but (as we shall

see later) there may be reasons for requesting a number in string form,

and in any case we must make it clear what is required. We should be

careful to use, for example:

“INPUT FIRST WORD” and not “INPUT A$”

“ENTER A NUMBER 1 TO 10” and not “INPUT X”

“MONTH (1 TO 12)” and not “MONTH?”

since if the user does not know what A or A$ are in the context of the

program he or she is unlikely to respond correctly, and might try

entering JAN or MARCH for the month.

We should also avoid the use of instructions grouped together:

10 PRINT “INPUT CURRENT, P.D , KNOWN AND

UNKNOWN RESISTOR”

20 INPUT A

30 INPUT B

40 INPUT C

50 INPUT D

10 DIM A(10,3)

20 PRINT “INPUT MATRIX”

30 FOR F = 1 TO 10

40 FOR N = 1 TO 3

50 INPUT A(F,N)

60 NEXT N

70 NEXT F

It is very easy for the user to forget which of the inputs is currently

required. The information also fails to include the units of the values

required, and does not print the input values on the screen. We should

use a format like this:

10 PRINT “INPUT CURRENT IN AMPS”

20 INPUT A

30 PRINT “CURRENT = ”; A;“ AMPS”

40 PRINT “INPUT P.D. IN VOLTS”

50 INPUT B

60 PRINT “P.D = ”; B;“ VOLTS ”

This provides both clear instructions and visible input values.

A look at any reasonably complex user-friendly program will show

you that a significant portion of any application program is

instructions. Instructions should be concise, but only to a degree that

still provides adequate information.

Expanded instructions can form part of the documentation of a

program, but the program itself must contain the basic instructions

required to ensure correct input and manipulation.

The program “MATMULT” in the program library has a better

approach to the array entry problem. Try to write one yourself, then

compare the two routines.

The combination of good instructions and input checks is the best

method of reducing user error. The human being is less reliable than

the computer, and far more inaccurate results or program crashes

occur due to input error than happen due to bugs in the program,

assuming it has successfully completed a sequence of dry runs.

Checks to reduce the possibility of human error, or prevent bad

effects from it, are the means by which a program is <idiot-proofed’ or

‘mug-trapped\ Commercial programs designed for inexperienced

users with no programming knowledge often have as much space

devoted to input checks as to the program proper. We can assume some

awareness in the users of our programs, and trust that they will enter 2

and not TWO, for example, but check routines can ensure that simple

keyboard errors are not passed over. Subtle errors or straightforward

mistakes are less easy to deal with.

354 355

It is a simple matter to check that an entered value is within an

acceptable range:

10 PRINT “INPUT MONTH (1 TO 12)”

20 INPUT M

30 IF MM2 OR M<1 THEN GOTO 10

Since the month is to be input as an integer we could add a line to check

this:

40 IF INT MOM THEN GOTO 10

In fact one line will do it all:

30 IF INT MOM OR M>12 OR MCI THEN GOTO 10

Note that if there is an error, using GOTO 10 rather than GOTO 20 at

least indicates to the user that something has happened by re-printing

“INPUT MONTH (1 TO 12)” on the screen. If we used GOTO 20

the user would wonder what had happened, and maybe think that the

year was now required. It is better to have a statement specifically

stating that there was an error in input. To continue our example, we

could have these lines:

30 IF INT M = M AND M< = 12 AND M> = 1 THEN GOTO 60

40 PRINT “INPUT ERROR:RE-INPUT MONTH”

50 GOTO 20

60 PRINT “INPUT YEAR (AS 82 FOR 1982, ETC.)”

70 .(Rest of program)

The user is informed what is wrong, and told what to do. Make sure

you see why the new line 30 had to have both the relational and logical

operators switched round to make the program work.

To enable re-use of check or error routines it is convenient to place

them in subroutines. The following date entry routine uses a

subroutine to print an error message for a few seconds (line 500) which

is used if any of the checks shows an error, The routine checks the

following:

i) Day of month between 1 and 31 (line 40)

ii) Month between 1 and 12 (line 90)

iii) Year between 1911 and 1998 (line 140)

iv) Whether the year is a leap year, and if it is not, that 29 February

has not been entered (line 190)

v) That days which do not exist in some months have not been

entered (line 210).

Check the logic used in these lines to see how it works. The lines are

good examples of how multiple conditions can be combined, but for

that reason they are a little difficult to follow.

10 PRINT "ENTER DATE”
20 PRINT "DAY?"
30 INPUT D
40 IF D>=1 AND D<=31 THEN GOTO

70
50 GOSUB 500
60 GOTO 20
70 PRINT "MONTH? (1 TO 12)"
80 INPUT M

90 IF M>=1 AND M<=12 THEN GOTO
120

100 GOSUB 500
110 GOTO 70
120 PRINT "YEAR? (AS LAST 2 DIG

•ITS) "
130 INPUT Y
140 IF Y>10 AND Y<99 THEN GOTO

170
150 GOSUB 500
160 GOTO 120
170 REM *CHECK DAY US MONTH*
180 REM *LEAP YEAR*
190 IF INT (Y+1900) /4) <> (Y+190

0)/4 AND M=2 AND D=29 THEN
GOTO 220

200 REM *SHORT MONTHS*
210 IF NOT ((M=2 AND D>29) OR (

M=4 OR M=6 OR M=9 OR M=ll A
ND D = 31) THEN GOFO 240

220 GOSUB 500
230 GOTO 10
240 REMPROGRAM
250 PRINT D?"/"?M;"/19";Y
260 REM .
270 REM .
400 GOTO 999
490 REM **ERROR NOTICE**
500 PRINT "***INPUT ERROR***","

PLEASE FOLLOW INSTRUCTIONS"
,"RE-INPUT REQUESTED DATA".

510 PAUSE 200
520 CIS

530 RETURN
999 REM*END*

The program “INDATE” in the program library uses much the same

routines, but set up as two nested subroutines, so that it can be used in

any program requiring multiple date entries, such as an accounting

program.

It is also a simple matter to put in input checks that print the input,

and invite the operator to check if it is correct, and to re-input if an

error has been made. This is important where multiple data entries are

being made, since an error would otherwise require entering

everything again. As an example, here is a check routine for string

input:

40 FOR N = 1 TO X
50 PRINT "INPUT STRING";N
60 INPUT W$(N)
70 PRINT W$ (N)
80 PRINT "IF INCORRECT PRESS E

TO RE-ENTER."; TAB 0; "PRES
S ANY OTHER KEY TO CONTINUE
IF OK."

90 IF INKEY$ THEN GOTO 90
100 IF INKEY$ = "E" THEN GOTO 5

0
110 NEXT N

356 357

Rather than check each value, it is sometimes better to wait until all

entries have been made, and then print them out for checking. This

routine does this for a list of numbers:

10 REM INPUTiPRINT*CHECK AND C
ORRECT ROUTINE FOR LIST

20 PRINT "ENTER NUMBERS"
190 DIM A(24)
200 FOR L=1 TO 24
210 INPUT ACL)
220 PRINT AT 3+L~12*CL>12)*10*C

L>12)r ACL)
230 NEXT L
300 PRINT AT 21*0?"ALL CORRECT?

CY OR N)M
310 INPUT E$
320 IF E*="Y" THEN GOTO 1000
330 CLS
340 PRINT "EACH VALUE WILL BE P

RINTED"»"ENTER NEWLINE IF OK. NEW
VALUE’S "IF WRONG. "
350 FOR F=1 TO 24
360 PRINT AT 21iO?ACF>
370 INPUT m
380 IF N$="" THEN GOTO 410
390 LET ACF)= VAL N$
400 PRINT AT 21iO;A(F)?u

it

410 SCROLL
420 NEXT F

1000 REM *REST OF PROGRAM*

Spectrum users should delete line 410, inserting 410 POKE 23692, - 1.

The virtue of using string input is that instead of stopping the program

with an error message if an invalid entry is made (a letter, character

that is non-numeric, or more than one decimal point), as occurs with a

numeric input, the string input can be accepted whatever the

characters input. The inputted string must be checked, however, or

else we just get an error message when using VAL to convert to a

numeric value. This requires a routine like the following:

5 REM "STRINGNUM"
10 PRINT AT 0,5;"INPUT NUMBER"
20 INPUT N$
30 LET DP=0
40 IF N$="" THEN GOTO 100
50 FOR F=1 TO LEN N$
60 IF CODE N$ (F) <27 OR CODE N$

(F)>37 THEN GOTO 100
70 IF CODE N$ (F) =27 THEN LET D

P=DP+1
80 NEXT F
90 IF DP>=2 THEN GOTO 100
95 GOTO 130

100 PRINT AT 0,5;"ERROR IN INPU
rpH

110 PAUSE 75
120 GOTO 10
130 REM ...REST OF PROGRAM_
140 SCROLL

150 PRINT VAL N$
160 GOfO 10

Spectrum users need to change the character code checks in lines 60

and 70. Change 27 in line 70 to 46. Change line 60 to read IF CODE

N$<46 OR CODE N$ = 47 OR CODE N$>57 THEN GOTO 100.

Change line 140 to read 140POKE 23692, - 1 and line 150 to read 150

PRINT AT 21,0;VALN$.

Line 20 inputs the string. Line 30 sets a variable to store the number

of decimal points. Line 40 checks that NEWLINE (ENTER) alone was

not pressed, and passes control to line 100 to print an error message if it

was. Lines 50 and 80 set a loop for the number of characters in N$, and

line 60 uses CODE to check whether characters other than numbers

and the decimal point are present, and goes to 100 for an error message

if they are. Line 70 adds 1 to the variable DP for each decimal point

found in N$. After the loop, line 90 sends control to 100 for an error

message if there is more than one decimal point. Line 95 bypasses the

error routine, and line 150 uses VAL to return the number for

printing. At this point, if the number were needed for calculation, a

variable could be set (LET N = VAL N$) to store the value.

Note that an input error causes (line 120) the input routine to be

repeated, after indicating for 1 seconds that an error exists.

V3; Example Programs

This Unit presents some examples of applications programs of various

types, as follows:

1 “REACT”: Reaction time testing.

2 “BINGO”: Creation, calling and checking the cards for playing

Bingo on the computer.

3 “REF. INDEX”: The calculation of refractive indices from the

angle of deviation and prism angle data produced by

spectrometer experiments.

4 “SERIES”: The summing of a convergent series to a given

degree of accuracy.

5 “GRAPH”: Calculation and plotting of functions, with titles

and scales, to give a hard-copy printout.

6 “ELEMENT”: The calculation of empirical chemical formulae

from the percentage composition of compounds, or the

percentage composition from the numbers of atoms of each

element in the molecule.

7 “CASSFILE”: Cassette file storage and manipulation, with

printout of cassette files and cassette label printing.

None of these programs are particularly complex (although CASSFILE

is lengthy), and they deal with fairly straightforward applications.

However, the principles involved are valid for any size of program, and

358 359

the programs themselves demonstrate many of the techniques and

procedures introduced earlier in the text. More examples of

applications programs and useful subroutines are to be found in the

program library provided in the Appendix, but they are not as fully

annotated. The programs here are presented as problems and

solutions, with some discussion of the approach to the problem. The

procedure is then presented, and the derived program.

Please remember that any program can be written in different ways,

even given that the algorithm is exactly the same. This variety of

solutions means that there is never only one correct program.

Spectrum users should note that we have indicated some instances

where the additional functions of the Spectrum can be put to use.

These functions are described in the next Section. After you have

explored the new functions, you should return to these programs and

modify them for practice in the use of these facilities.

1. “REACT”

Problem: To use the computer to assess response times in reaction to a

signal. An average should be taken of a number of timings.

Research the problem: The timing function can use the system

variable FRAMES. A start signal will be required, which should be

preceded by a random delay to prevent anticipation. Computing time

must be allowed for in the result. The number of timings desired

should be input and used to set up a loop.

On the ZX81 FRAMES is a system variable held in 2 bytes, 16436

and 16437. On the Spectrum it is 3 bytes, 23672, 23673 and 23674.

The program can use both bytes on the ZX81 and the two less

significant bytes (the first two) on the Spectrum (since we do not need

to time hours!). This will give a timing period of up to

((256 x 255) + 255)/50 seconds in the U.K. and ((256 x 255) + 255)/60

seconds in the U.S., or about 22 and 18 minutes respectively, before

the FRAMES counter, which counts backwards by decrementing by 1,

every 1/50 (or 1/60) seconds, reaches zero. This will allow the program

to be used as a timer for longer periods, or modified for use as a

stopwatch program.
Procedure: The program will have a loop structure, determined by the

input of the number of tests required. Outside this loop will be the

instructions at the beginning of the program, and the output of average

reaction time.
This timing module is the core of the program. The input module

(instructions, ‘get ready’ messages and an input for the number of

timings required) and the output module (average time) are easily built

around this. We may proceed to code in a version of this module,

having decided our structure for the program, and test/debug the

timing module, before using the editing facilities to modify this module

as required and code in the input and output modules.

The timing module will require the address bytes to be set at a

known value (the maximum, 255) by POKEing values in, and the

values returned by PEEKing these bytes will be used to calculate the

time according to the expression T - ((256*(255 - PEEK

16437)) + 255 - PEEK 16436)/50. (U.S. users must use 60, not 50 in

the expression and the program.) For the Spectrum the first address

will be 23673 and the second 23672.

Our procedure in this simple linear program is as follows:

1 Input Module 1 Give instructions

2 Input number of tests required (A)

3 Initialise array for timings, B(A)

4 Initialise variable for total timings, X

5 Initialise FOR - NEXT Loop (1 TO A)

2 Timing Module 1 Give “get ready” message

2 Provide random delay to prevent antici¬

pation

3 Set timing function by POKEing 255 into

the FRAMES addresses

4 Give signal

5 Wait for key to be pressed

6 Calculate reaction time. Allow for

computing time

7 Store result as B(A)

8 Add B(A) to X

9 Repeat 1 - 8, A times

3 Output Module 1 Calculate average reaction time

2 Print average time

The timing module could be coded, run and tested as follows:

Timing Module Program Listing

1 REM REACT CORE PROGRAM
160 PRINT "-ON YOUR MARKS-"
170 PAUSE 75
ISO CLS
190 PRINT "<GET SET>"
200 FOR L=0 TO RND #500
210 NEXT L
220 POKE 16436,255
230 POKE 16437,255
240 PRINT AT 10,10?"#00#"
250 IF INKEY$ = THEN GOTO 250
260 LET T= (2:55- PEEK 16436>/50+

(256*(255- PEEK 16437)>/50-0.12
270 PRINT "REACTION TIME "?T?M

SECONDS"

Spectrum users should note the problem with INKEY$, and the fact

that we cannot use PAUSE 0 since the PAUSE instruction uses

360 361

FRAMES also. The solution is to use the ENTER key as the key to be

pressed. Change line 250 to INPUT A$. As long as only the ENTER

key is used, this works. Change .12 to .03 (the time allowed for

computing) in line because of the faster response of the Spectrum.

When satisfied that the timing module works, we go on to code in the

rest of the program, editing any changed lines. (Only 260, since we

kept the same numbering.) You would have to change line numbers in

developing the program, unless you coded your program accurately

with line numbers before keying anything in.

For the Spectrum, modifications are required in the following lines:

200 FOR L - 0 TO RND * 1000

220 POKE 23673, 255

230 POKE 23672, 255

260 LET T - (256 * (255 - PEEK 23673))/50

+ (255 - PEEK 23672)/50 - .03

If there are problems with the INKEY$ operation on the Spectrum (as

we noted earlier, it doesn’t always work), the program should be

modified to:

i) Instruct the user to hold his finger over, then press the ENTER

key (lines 60 and 70).
ii) Change line 250 to read INPUT A$. The null string will then be

entered when ENTER is pressed and the program will go to the

next line, to derive the reaction time.

Users in the U.S. must replace the 50 which appears twice in line 260,

by 60 to get an accurate timing result.

Spectrum users can use the DEF FN, FN functions for timing. See

the Sinclair Spectrum manual, Chapter 18, for a good description of

this method.

Flowchart “REACT”

362 363

364

Program listing

i @ e b>

5 REM "REACT"
10 PRINT "REACTION TEST"
20 PRINT "*************"
30 PRINT
40 PRINT "THE SCREEN WILL SHOW

A "" GET SET "" "
50 PRINT "MESSAGE, PLACE A FINO

ER OVER"
60 PRINT "THE "" R »" KEY. WH

EN *G0* APPEARS"
70 PRINT "PRESS R. EACH REACT10

N TIME AND"
SO PRINT "THE AVERAGE WILL EE

DISPLAYED"
90 PAUSE 600

100 PRINT ? j"ENTER NUMBER OF TE
STS REQUIRED"

110 LET X=0
120 INPUT A
130 DIM D(A)
140 PRINT
145 REM

TEST LOOP

150 FOR N=1 TO A
160 PRINT "-ON YOUR MARKS-"
170 PAUSE 75
ISO CLS
190 PRINT "<GET SET>"
200 FOR L=0 TO RND *500
210 NEXT L
215 REM

SET TIMER BYTES
220 POKE 16437i255
230 POKE 16436? 255
240 PRINT AT 10?10?"*G0*"
250 IF INKEY$ ="" THEN GOTO 250
260 LET B(N > = (256*(255- PEEK 16

437))/50+C255- PEEK 16436)/50-0.
12
270 PRINT "REACTION TIME "?BCN)

?" SECONDS"
290 LET X=X+B(N)
290 PRINT "PRESS NEWLINE/ENTER

TO CONTINUE"
300 INPUT A$
310 CLS
320 NEXT N
325 REM

ENDLGOF'

330 PRINT
340 PRINT "AVERAGE TIME WAS "?X

/A?" SECS"
350 STOP

360 REM **END**

365

Comments'. The use of an array (B(A)) gives us the flexibility to add

further manipulations (full printout or standard deviation, for

example) if we wished, by adding a further module to the program.

We could use the same principle to time other processes. The

accuracy of the allowance for the delay due to computing time becomes

less important as the time being measured increases. To derive a stop¬

watch program (timing less than 65535/50 secs - about 21 minutes in

the U.K.) we would need a start and stop routine, built around the

POKE and PEEK lines. Write such a program. Notice how the

program is set so that the computer waits until a key is pressed in line

250. Remember we cannot use PAUSE in the form of PAUSE 40000

(ZX81) or PAUSE 0 (Spectrum) since that uses the FRAMES system

variables also, and would reset the timer.

2. “BINGO”

Problem'. In the game of BINGO the caller shouts out the numbers

between 1 and 99 in a random order and each player has a card with a

set of numbers (say 15) in this range. The cards for each player contain

different sets of numbers. The winner of the game is the player whose

list of numbers is called, first.
The program should play the game for up to four players and check

the validity of the winning player’s card.

Outline Procedure: Modules are required as follows:

1 Set up game 2 Playgame 3 Result of game

Procedure will be as follows:

1.1 Write preliminary instructions

1.2 Set up caller’s numbers

1.3 Set up players’ numbers

1.4 Display players’ numbers

2.1 Display caller’s numbers (one at a

time)

2.2 Allow interruption by player

3.1 Display players’ numbers

3.2 Display numbers called

3.3 Check winning card

1.1 These are the instructions needed to start the game. At each stage

in the program it is essential to give clear directions to the user on

how to proceed.
1.2 The caller’s numbers require a random list of the integers 1 to 99

(each number occurring only once) which will be put in array

A(99).

1.3 The players’ cards require 4 sets (cards) of 15 random integers in

the range 1 to 99 (i.e. different numbers). The cards should have

an ordered list of numbers and each list is a different set of

numbers. These will be put into arrays Q(15), R(15), S(15) and

T(15).

1-4 Display the players’ cards on the screen and allow time for the

players to take down the numbers.

2.1 Display the caller’s numbers one at a time on the screen in large

form.

2.2 Allow the display to be interrupted when a player calls ‘house’

(i.e, thinks that all the numbers on his card have been displayed).

3.1 Repeats 1.4 for players to check their numbers.

3.2 The numbers called (i.e. those actually displayed in 2.1) are

sorted into numerical order (and put into array P(99) which

contains between 15 and 99 numbers) and displayed on screen.

3.3 The ‘winning’ card is selected and the numbers on this card are

put into the array V(15). These numbers are then compared with

the numbers called [in P(99)] to check that they are correct.

Algorithm Description

1.1 This section gives the minimum instructions required to play.

You may want to key in fuller details of the game of BINGO.

(Lines 10 to 110 in program).

1.2 Set up caller’s numbers

Flowchart:

366 367

This routine starts at line 120, clearing the screen and going into fast

mode on the ZX81 for the calculation. The above routine is contained

within the caller’s numbers subroutine (lines 2500 to 2590), but note

this could be a subprogram sequence as part of the main program as it

is only executed once.

1,3 Setting up (the BINGO cards)

Flowchart:

In the program this routine begins at line 320. Note array P(99), which

is used in the sorting routine (although containing only 15 numbers)

and is then used again later for the caller’s numbers.

Lines 480 - 540 carry out the selection of the 15 random numbers.

Subroutine 3000 - 3170 is the sorting routine which is the SHELL

SORT given in Section T. (A fast sort is needed as at a later stage we

are sorting nearly 100 numbers.)

Subroutine 3500 - 3560 puts the numbers into the appropriate

array.

1.4 This subroutine (lines 1600 - 1650) displays the numbers on the

cards in a tabular form.

2.1/2.2 Display caller’s numbers and interrupt if ‘House’ is called

368 369

This subroutine takes numbers generated and (in FAST mode on

the ZX81) displays them 16 times their normal size and places

them in an array P. Variable Z counts the number of numbers

called. At the end of this subroutine the numbers called have

been put into the array P (which will contain Z numbers).

3.1 This repeats step 1.4.
3.2 This routine (lines 960 - 1070) calls a sort subroutine at line 3000

which sorts the list P (Z) into numerical order and prints them out

on the screen.

3.3 This subroutine (lines 4000 - 4260) has two parts.

(1) Select the 'winning' card and arrange for the ‘winning’ list

of numbers to be put in the array V(15) (lines 4000 - 4120)

(2) Check the numbers on the ‘winning’ card. It is necessary to

search the ordered list P containing Z numbers for the

numbers in the ordered list V containing 15 numbers. If any

number is missing the card is not complete. If all numbers

are present then CONGRATULATIONS is printed.

The quickest search method is as follows:

Search for V(l) in list P until it is found, say P(12).

Search for V(2) in list P beginning at P(13) etc.

The search will end as soon as a number in list V is not in list P

but will continue for all 15 numbers in list V if they appear in list

P. The flowchart for this search is as given below:

COUNTER FOR
LIST P

COUNTER FOR
LIST V

CHECKS IF
NUMBERS IN
LIST P
FINISHED

370 371

Data Table

The following variables are used;

Q(15), R(15), S(15), T(15) are the arrays containing the players

numbers.
A(99) is the array containing the numbers for the caller.

P(99) is the array containing the numbers actually called, and is also

used as a temporary storage in setting up the players’ numbers and in

the sorting routine.

X is a random number between 1 and 99.

Z is a counter for numbers called.

Y is the number of elements present in an array to be sorted.

V(15) is array containing ‘winning’ list of numbers.

B$(99,2) is an array containing the string values corresponding to the

elements in P(99).
C is the character code of second character in element of array B$.

D is the character code of first character in element of array B$.

M is the counter for array P in the ‘check numbers’ section.

Comments'. If you wish to play with your own BINGO cards and let the

computer be the caller only, then you can delete modules of the

program as follows:

1.3 Set up players’ numbers

1.4 Display players’ numbers

3.1 Display players’ numbers
These latter two modules are the same subroutine. You could also

revise the program and include, as an option in the user instructions

routine at the beginning, the choice of the two different modes of play.

Spectrum modifications:

Delete Lines 290 and 585.

Change Line 660 to 660 PAUSE 0

Delete Line 830

Change line 800 to 800 FOR F = 1 TO 400

Edit line 810, renumber as line 805, to read 805 IF INKEY$<>“

THEN GOTO 830

New line 810 NEXT F
Note: This sets up a FOR - NEXT loop to contain the reading of

INKEY$, to make this operation of checking to see if someone’s bingo

card is full more reliable. The delay of a 1 TO 400 loop is about two

seconds, the same as the PAUSE in the original program.

Edit line 835, renumber as line 830, to read 830 CLS

Delete line 835

Change line 980 to PAUSE 0

Delete line 1005

Delete line 1025

Delete line 5010

Change line 5070 to 5070 LET E - PEEK (15360 + 8*C + R)

Change line 5200 to 5200 LET F - PEEK (15360 + 8*D + R)

Flowchart ‘BINGO’

372
373

Program Listing

5 REM "BINGO"
10 REM ******************

*1.1*INSTRUCTIONS *
* ** * * ** * * * * * * * *** * *** * *

20 PRINT TAB 10!"BINGO"! TAB 1
05"*•****"

30 PRINT i 9 "FOUR .BINGO CARDS A
RE PRODUCED"

40 PRINT j»"AS THE LISTS "" Q
nil H II £> Mil ? MU C; MU Ps(\JO 11 “

y M II ll

50 PRINT ii"THEY ARE COPIED TO
A PRINTER'S ii"IF CONNECTED.OTHE

RWISE YOU MUST"
60 PRINT ii"NOTE DOWN YOUR CHO

SEN LIST WHEN"
70 PRINT ii "THEY APPEAR. NOTE T

HE LETTER ALSO"
80 PRINT ii"WHEN YOU ARE READY

PRESS ANY KEY"
90 PRINT t >"TO START. THERE WIL

L BE A DELAY"
100 PRINT ii"WHILST THE NUMBERS
ARE SET UP. "
110 IF INKEY* ="" THEN GOTO 110
120 CLS
200 RAND
290 FAST
300 REM ***********************

*1.2*SET UP CALLERS *
* NUMBERS *

310 GOSUB 2500
320 REM ***********************

*1. 3*SET UP PLAYERS *
* NUMBERS *

420 DIM QC15)
430 DIM RC15>
440 DIM SCI5)
450 DIM TC15)
460 DIM PC99)
470 FOR U=1 TO 4
480 FOR .J=l TO 15
490 LET X= INT (99* RND >+i
500 FOR 1=1 TO J-l
510 IF X==PCI> THEN GOTO 490
520 NEXT I
530 LET PCJ)=X
540 NEXT J
550 LET Y=15
560 GOSUB 3000
570 GOSUB 3500
580 NEXT U
585 SLOW
590 PRINT
600 PRINT
610 REM ***********************

*1.4*DISPLAY PLAYERS *
* NUMBERS *

620 GOSUB 1600

630 REM **LIST COPIED IF **
** PRINTER **

640 COPY
650 PRINT » ?"PRESS ANY KEY TO P

ROCEED"
660 IF INKEY$ =MM THEN GOTO 660
670 CLS
680 PRINT "THE CALLER WILL GIVE
THE NUMBERS ONE AT A TIME"
690 PRINT
700 PRINT "WHEN YOUR CARD IS CO

MF’LETE PRESSANY KEY WHEN NUMBER
IS ON SCREEN"

710 PRINT
720 PRINT "PRESS ANY KEY TO PRO

CEED"
730 IF INKEY$ ="" THEN GOTO 730
735 CLS
740 REM ***********************

2. 1 PRINT OUT CALLS *

745 LET Z=1
750 DIM B$(99»2)
755 CLS
760 PRINT " PRESS ANY KEY WHEN
YOUR CARD IS COMPLETE"
770 FOR N=Z TO 99
780 GOSUB 5000
790 LET P CN)=A(N)
795 PAUSE 200
300 REM ***********************

*2. 2*PLAYER INTERRUPT *

810 IF INKEY$ <> "" THEN GOTO 8
30

815 LET Z=Z+1
820 NEXT N
830 SLOW
835 CLS
840 FOR N=1 TO 10
850 PRINT TAB N!"<*BINGO*><*BIN

G0*>"
860 NEXT N
870 PRINT ii "CHECK YOUR CARDS"
380 REM ***********************

*3. 1*DI8PLAY PLAYERS *
* NUMBERS *

890 PAUSE 100
900 CLS
910 LET Y=Z
920 PRINT "YOUR NUMBERS WERE"
930 PRINT
935 REM ***********************

PRINT OUT CARD NUMBERS

940 GOSUB 1600
945 REM
950 REM ***********************

*3. 2*DISPLAY NUMBERS *
* CALLED *

374
375

960 PRINT "PRESS ANY KEY TO GET
LIST OF%"THE NUMBERS CALLED. “
970 PRINT "THERE WILL BE A SHOR

T DELAY FOR SORTING. "
980 IF INKEY* THEN GOTO 980
990 CL8

1005 FAST
1010 GOSUB 3000
1020 CLS
1025 SLOW
1030 PRINT "CALLERS LIST"
1040 PRINT
1050 FOR N=1 TO Z
1060 PRINT P<N)t" "7
1070 NEXT N
1080 PRINT
i o 0 5 R E M ********** * * * * * * * x * * * -x *

*3. 3*CHECK WINNING *
* CARD *
********* * *************

1090 GOSUB 4000
1100 LET Z=Z-M
1110 PRINT ?i"DO YOU WISH TO COM
TINUE THE GAME? CY/N)"
1120 INPUT C$
1130 IF C$=,IN" THEN STOP
1140 IF C*="Y" THEN GOTO 755
1150 PRINT "INPUT Y OR N ONLY?PL
EASE"
1160 GOTO 1120

1190 REM ***********************
* END PROGRAM *

1200 STOP

1210 REM

1580 REM ***********************
* SUBROUTINES *

1590 REM
1600 REM ***********************

**SUBROUTINE TO PRINT *
*#OUT PLAYERS CARDS *
********* **** * x * * * * * * * *

1610 PRINT "Q"7 TAB 6?"R"7 TAB 1
2;"S"7 TAB 18;"T"
1620 FOR U=1 TO 15 .
1630 PRINT Q(J)J TAB 67RCJ>? TAB

127 SCO)7 TAB 1857(J>
1640 NEXT J
1650 RETURN

1660 REM ** ENDSUB **
********************* * *

2490 REM
2500 REM ***********************

^SUBROUTINE TO SET **
**CALLER8 NUMBERS **

2530 DIM A < 99 >
2540 FOR N=1 TO 99

2550 LET X- INT <99* RMD)+l
2560 IF ACX) <> 0 THEN GOTO 2550
2570 LET A C X > =N
2580 NEXT N
2590 RETURN

2600 REM ** ENDSUB **
************* ***********

2990 REM ***********************
**SGRT SUBROUTINE **

3000 LET 8=Y
3010 LET S= INT (S/2)
3030 IF S >=* 1 THEN GOTO 3050
3040 GOTO 3170

3050 FOR !<= 1 TO S
3060 FOR A=K TO Y-S STEP K
3070 LET B-A
3080 LET T=P(A+S>
3090 IF T >« P<B) THEN GOTO 3130
3100 LET P CB+S)-P<B)
3110 LET B=B-S
3120 IF B >= 1 THEN GOTO 3090
3130 LET P(B+S)=T
3140 NEXT A
3150 NEXT K
3160 GOTO 3010

3170 RETURN

3180 REM ** ENDSUB **

3190 REM
3490 REM ***********************

SUBROUTINE FOR FOUR
**NUMBER ARRAYS **

3500 FOR J*=l TO 15
3510 IF U=1 THEN LET Q<J)=PCJ)
3520 IF U=2 THEN LET R(J)=P<J)
3530 IF U~3 THEN LET S<J)=P<J>
3540 IF U=4 THEN LET T<J)=PCJ)
3550 NEXT J
3560 RETURN

3570 REM ** ENDSUB **

3580 REM
3990 REM ***********************

^SUBROUTINE TO CHECK**
**RESULTS **

4000 PRINT
4010 REM ***********************

*3. 3. 1*8ELECT WINNING *
* CARD *

4020 PRINT "TYPE WINNING CARD <Q
i R j S i T) "

376 377

4030 INPUT A$
4040 IF A$ <> "Q" AND A$ <> "R"
AND Af> <> “S" AND A$ <> "T" THEN

GOTO 4020
4050 CLS
4060 DIM V(15)
4070 FOR N=1 TO 15
4080 IF A$="Q" THEN LET V<N)=Q<N
)
4090 IF A$="R" THEN LET VCN)=R<N
)
4100 IF A$="S" THEN LET V(N)=S<N
)
4110 IF A$="T" THEN LET VCN>=TCN
}
4120 NEXT N
4125 REN ***********************

*3. 3. 2*CHECK NUMBERS *

4130 LET M“1
4140 FOR N=1 TO 15
4150 IF V(N)=PCM) THEM PRINT VCN

CORRECT"
4160 IF VCN)=P(M) THEN GOTO 4200
4170 LET M=M+1
4180 IF M=Z+1 THEN GOTO 4220
4190 GOTO 4150

4200 NEXT N
4210 GOTO 4245

4220 PRINT "*CARD 11 f A$7 " NOT CON
FLETED*"
4230 PRINT V(N)J" NOT CALLED"
4235 REN

**GOTO RETURN TO CONTINUE

4240 GOTO 4260

4245 PRINT »? TAB 4?" ** CONGRAT
ULATIONS ** "? ‘TAB 4; "$$$$$$$$$$
$$&$$$$$$"? >i"GAME ENDED. USE RUN

TO RESTART"
4250 REN

** GOTO PROGRAM END **

4255 GOTO 1200

4260 RETURN

4270 REN ** ENDSUB **

4900 REN
5000 REN ***********************

SUBROUTINE BIG PLOT

5010 FAST
5020 LET B$(N)= STR$ ACN)
5030 LET C= CODE B$CNM1 TO 1)
5040 IF LEN B$(N)<2 THEN GOTO 50
60

378

5050 LET D“ CODE B*<N)C2 TO 2)
5060 FOR R=0 TO 7
5070 LET E= PEEK <768C+8*C+R>
5030 LET W=128
5090 FOR 0*0 TO 7
5100 IF E<W THEN GOTO 5150
5110 PRINT AT 2*R+5i 2*0+1 ? "B"
5120 PRINT AT 2*R+6i2*Ch 1 ?
5130 LET E=E-W
5140 GOTO 5170

5150 PRINT AT 2*R+5>2*0+17" "
5160 PRINT AT 2*R+6»2*0+1; " "
5170 LET W“W/2
5180 NEXT G
5190. IF LEN B$ (N) <2 THEN GOTO 60
20
5200 LET F= PEEK <7680+8*0+R)
5210 LET W=123
5220 FOR H-0 TO 7
5230 IF F<W THEN GOTO 5230
5240 PRINT AT 2*R+5i 2*H+16?
5250 PRINT AT 2*R+6i 2*H+16S
5260 LET F=F-W
5270 GOTO 6000

5230 PRINT AT 2*R+5?2*H+16?" "
5290 PRINT AT 2*R+6j2#H+16?" "
6000 LET W”W/2
6010 NEXT H
6020 NEXT R
6035 SLOW
6040 RETURN

6050 REN ** ENDSUB **

6060 REN
6070 REN ** END PROGRAM LIST**

3. “REF. INDEX”

Problem: In a laboratory experiment with a spectrometer, a series of

measurements are made of the prism angle A and the angle of

minimum deviation D for various prisms. The refractive index of each

is then determined using the formula:

N = Sin (A + D) +■ Sin (A)

2 2
We require a table of results and an average of the refractive index

results for each prism. Six prisms and four measurements for each

prism are to be allowed for.

Research the problem: Since we are using up to six prisms and each

one can have four readings it is convenient to use nested loops and two-

dimensional arrays to store the input. In this way A(3,4) can, for

example, represent the third prism, fourth reading of prism angle. We

will use lists to refer to the prisms and the quantities associated with the

379

prisms, so that, for example, Z(3) can represent the average refractive

index of the third prism.

Angles will be input in degrees. Since the formula for the calculation

requires the use of the Sine function SIN, we will need to convert to

radians. This will have to be done before the refractive index is

calculated. We can provide a simple input check in a subroutine. Zero

entries in the input loops will signify end of prisms or end of readings.

Outline Procedure:

1 Input: Data

2 Calculate: Refractive indices and averages

3 Output: Results in suitable tabular form

Detailed Procedure:

1 Input 1.1 Dimension Arrays and Lists

1.2 FOR each Prism (1 to 6)

1.3 Set Z as zero

1.4 Input Prism number

1.5 If Prism-0, GOTO 3.1

1.6 FOR each Reading (1 to 4)

1.7 Input Prism Angle

1.8 If Angle = 0, GOTO NEXT Prism

1.9 Input Minimum Deviation

2 Processing 2.1 Convert angle to radians

2.2 Convert minimum deviation to radians

2.3 Calculate Refractive Index

2.4 Round to 3 decimal places

2.5 Add Refractive Index to Z

2.6 NEXT Reading

2.7 Average R.I. = Z divided by number of

readings

2.8 Let Average R.I. « Z(N)

2.9 NEXT Prism

3 Output 3.1 Print Headings

3.2 FOR Each Prism

3.3 FOR Each Reading

3.4 If Reading not 0, print Prism, Number,

Angle, Minimum Deviation, Refractive Index

3.5 NEXT Reading

3.6 NEXT Prism

3.7 Print Headings

3.8 FOR Each Prism

3.9 Print Prism Number, Refractive Index

3.10 NEXT Prism

4 Correct 4.1 Input null string if error, C if correct

380

Error 4.2 Return

Subroutine

Note: Subroutine called after each input. All entries can be re-input if

incorrect. See program listing.

Data Table

P(6) Prism number

A(6,4) Four Angles of measurement for each of 6 prisms

D(6,4) Minimum Deviations, for each value of A(6,4)

N(6,4) Results of refractive index calculation for each experiment,

derived from the values stored in arrays A and D

Z Variable to store totals of minimum deviations.

Z(6) Average refractive index for each prism, from the average of

the four values stored in array N.

N,M Used as loop variables for input

X,Y Used as loop variables for printout

A$ Used as input for error check subroutine.

Null string if incorrect, “C” if correct.

Flowchart “REF. INDEX”

381

Program Listing

5 REM "REF.INDEX"
10 PRINT "**REFRACTIVE INDEX**

"in "USING SPECTROMETER"
20 PRINT ii"ALLOWS UP TO 6 PRI

SMS AND 4 SETS OF READINGS FOR E

AVGE REF.IND.ARRAY
Z (4)
PRISMS ARRAY
P(6)
PRISM ANGLE ARRAY
A<6,4>
MIN.DEV. ARRAY
D (61 4)
REF.IND. ARRAY
N(6,4)
************ ***********
INPUT DATA LOOP

N=1 TO 6
Z=G

110 PRINT "INPUT PRISM NUMBER,I
NPUT 0“,"TO FINISH"

120 INPUT P (N)
130 PRINT "PRISM NUMBER ";P(N>
140 GOSUB 700
150 IF A$ <> "C“ THEN GOTO 110
160 IF P(N)=0 THEN GOTO 500
165 REM ***********************

START READINGS LOOP

170 FOR M=1 TO 4
180 PRINT "INPUT PRISM ANGLE IN
DEGREES, INPUT 0 TO FINISH"
190 INPUT A(N,M)
200 PRINT "ANGLE OF PRISM ";A(N

, M)
210 GOSUB 700
220 IF A$ <> "C" THEN GOTO 180
230 IF A(N,M>=0 THEN GOTO 410
240 PRINT "INPUT MIN. DEV. IN DE

GREES"
250 INPUT DCNiM)
260 PRINT "MIN. DEV. "5D(N,M)
270 GOSUB 700
280 IF M <> "C" THEN GOTO 180
290 REM **CONVERT DEGREES TO**

**RADIANS **
300 LET A=A(N,M>* PI /ISO
310 LET D=D(N»M)* PI /ISO
320 REM **REFRACTIVE INDEX**
330 LET N C N, M) = (SIN <(A+D>/2)>

/ SIN (A/2)
340 LET N(N,M)= INT (1000*N(N,M

>+. 5)/1000
350 LET Z=Z+N(N,M)
360 NEXT M
370 REM **ENB READINGS LOOP **

380 REM
390 REM **AVERAGE TO 2 DEC.**

** PLACES **

ACH"
25 REM
30 DIM
35 REM
40 DIM
45 REM
50 DIM
55 REM
60 DIM
65 REM
70 DIM
80 REM
85 REM

90 FOR
ioo LET

382 383

400 REM
410 LET Z-Z/CM-1)
420 LET ZCN>= INT <100*Z+. 5>/10

0
430 NEXT N
440 REM
450 REM ##ENB INPUT LOOP
460' REM #######*#############
470 REM
480 REM ***#*#**###***###**##
490 REM PRINT OUT **
495 REM
500 PRINT “PRISM * ANGLE * MIN,

DEV * RF. IN.
###*#*###*"

510 FOR Y=1 TO N-i
520 FOR X=1 TO 4
530 IF A<YiX)=0 THEN GOTO 550
540 PRINT P<Y)J TAB 6?"* “JACYi

X); TAB 14?"* "? D(Y > X > ? TAB 24?"
* "?N(YiX)

550 NEXT X
560 NEXT Y
570 PRINT "*####******#***#****

*###*****###"
580 PRINT
590 PRINT i i "AVERAGE REFRACTIVE
INDICES"
600 PRINT "a*####***********#**

*#********#*"
610 PRINT "PRISM"»"REF. IND."
620 FOR X=1 TO N-1
630 PRINT P<X)iZ<X)
640 NEXT X
650 PRINT
660 PRINT **********************

670 GOTO 770

680 REM
690 REM **********************
695 REM
700 REM **CORRECT ERRORS SUB**
710 PRINT
720 PRINT "INPUT C IF CORRECT*0

THERWISE","PRESS NEWLINE"
730 INPUT A$
740 CLS
750 RETURN

760 REM
END SUBROUTINE

770 STOP

780 REM *# END **

384

Sample Printout:

PRISM * ANGLE * MIN.DEV * RF.IN.

1 * 59.8 * 40.5 * 1.54
1 •k 60.1 it 40.2 * 1.533
2 ★ 61.2 * 45.3 & 1.574
2 ih 62 it 45.1 "k 1.562
2 ★ 62.5 it 45.4 it 1.558

AVERAGE REFRACTIVE INDICES
'k'k'k'k'k'k'k'k’kit'M'k'k'k'k'k'k'k'k'k'k'k'k'kitif'kit'k'k'k'k'klK'k'k

PRISM
1
2

REP.IND.
1.54
1.56

Comments: Note the importance of a check subroutine in this type of

multiple-entry program. It gives the user the chance to verify that the

input data is correct. It might have been better to have written a

program to deal with any number of prisms and any number of

readings. Consider what changes this would make to the program.

There are many other physics experiments which may be treated in a

similar way. For example:

(i)

(“)

The value of the gravitational constant, g, by simple pendulum,

using the time period equation T = 2n\f^ for experiments with

pendula of various lengths 1 to determine the average value of g

resulting.

The determination of the velocity of sound, using a resonance

tube to find the 1st and 2nd resonance lengths (LI and L2

respectively) and using the equation V = 2f(L2 - LI), where

f = frequency of the sound, and V the velocity.

4. “SERIES”

Problem: We are asked to sum the series that gives us the value of e

raised to the power x. This is:

x2 x3 xn
ex = 1 + x + Tjy + + + ... for any value of x, with an accuracy

of 1 part in 100,000 (i.e. 10~5, .00001).

385

Research the problem: This is the EXP function on your computer,

evaluated as a series. The resulting value of, e.g., eJ, will be

approximately the value of EXP 3 if you used it on the computer. This

is a convergent series, the value of each term gets smaller. For example, if

we take x = 2,|Jis““ = 2, whilst =1.333... .At a certain

point, the effect of adding the value of another term is to increase the

sum by less than the accuracy we require. The summing is then

finished.
Procedure; This requires a procedure which allows any term in the

series to be calculated from the previous term. This is the basic

algorithm for summing many series.

At this stage we need to consider if it is a specific problem or whether

we could extend it to deal with other similar series-sum problems. It is

important to make this decision before the program is written as it is

often very time consuming to modify a program at a later stage. The

answer is yes. We can then restate the problem as: a program is

required which will sum a convergent series to any desired accuracy

(subject to the limitations of the computer’s arithmetic), provided that

any term may be expressed as a function of the previous term, with the

information needed being the first term and the common ratio. The

common ratio is the equation that enables us to calculate any term

from the previous one.

For our problem: take the exponential series:

ex = 1 -I- x + ■
+ (n-l)! +

In this series the first term is 1.

The common ratio = ^ jyhTrm' The n'’ term is (if- 1)! and the

x11-2 m xn_1 (n - 2V x
(n - l)th term is (n _ 2), . The ratio is (n _ x„_2 -—[•

We require an accuracy of one part in 100,000 (10 ~5). When the

effect of adding another term increases the sum by less than this, the

program should stop processing and output the result.

Outline Procedure:

1 Input necessary information

2 Sum series term by term

3 Compare sum with previous value

4 Print out result when sums differ by less than required value

Detailed Procedure'.

Input 1.1 Common Ratio - may be easiest to have a re¬

placeable line in program.

386

1.2 First term - easily input

1.3 Accuracy - easily input

1.4 Value of X - easily input

2 Sum 2.1 Initialisation - set 1st term equal to given

value which in turn is the sum of the series at

this stage.

2.2 Next term - may be calculated by multiplying

first term by common ratio.

2.3 Sum - may be calculated by adding this term

to previous sum

3 Comparison 3.1 Compare this sum with previous value then

EITHER go to 4.1 if the difference is less than

that required or go back to 2.2 if difference is

more than that required.

4 Output 4.1 Name of series

Results 4.2 Accuracy

4.3 First term

4.4 Value of X

4.5 Sum of series

4.6 Number of terms

Variables Table

Input

A$ Name of Series

A Value of first term in series

X Value of X

D Accuracy required (difference between terms, such

that program terminates when difference smaller

than this).

Processing and Output

T Value of current term being processed

N Number of terms

SI Value of Sum of series of N - 1 terms.

5 Value of Sum of series to N terms.

SI - S Difference between the sums of the series to the Nth

and (N - l)th terms, checked against value of D.

T = T*X/(N - 1) Calculates value of next term in series from current

term.

The common ratio is set in line 260. This line must be changed for

different series. Spectrum users could use the DEF FN instruction in

initialisation, and the FN instruction to evaluate the expression in line

260. Try this when you have familiarised yourself with this function.

387

Flowchart “SERIES”
Program listing

10 REM “SERIES*1
20 PRINT “ ## SERIES ## 'Sm11

THIS PROGRAM SUMS ANY SERIES11
30 PRINT “WHICH IS CONVERGEN

T AND WHERE11
40 PRINT * .“ANY TERM MAY BE CA

LCUIATED PROM'S «t“THE PREVIOUS T
ERM"

50 PRINT i?“REPLACE LIME 260 A
S APPROPRIATE11

60 PRINT ii"HIT A KEY TO START
ii

65 REM KRAUSE 0 FOR SPECTRUM
##IN LINE 70 ##

70 PAUSE 40000
80 CLS
90 PRINT “INPUT NAME OF SERIES

n

100 INPUT A$
110 PRINT “INPUT VALUE OF FIRST
TERM11
120 INPUT A
130 PRINT “INPUT VALUE OF X"
140 INPUT X
150 PRINT “INPUT ACCURACY REQUI

RED11
160 INPUT D
165 REM
170 REM ##FIRST TERM*#
175 REM
180 LET T-A
185 REM
190 REM ##NUMBER OF TERMS##
1*5 REM
200 LET N®1
205 REM
210 REM ##SUM St NEW SUM SI#*
215 REM
220 LET Sl^A
230 LET S^Sl
235 REM
240 REM ##CALCULATE NEXT TERM##
245 REM
250 LET N=»N+1
255 REM ##SPECTRUM USERS CAN ##

##USE DEF FN HERE *#

260 LET TST#X/(N-1)
265 REM
270 REM *#CALCULATE NEW SUM##
275 REM
280 LET S1=S1+T
285 REM
290 REM ##COMPARE S AND SI*#
295 REM
300 IF ABS (Si-S)>D THEN GOTO 2

30
310 CLS
315 REM ##OUTPUT RESULTS#*

320 PRINT “SUM OF 11J A$?“ SERIES

388
389

330 PRINT "a####*#*#*###*****#**

340 PRINT "TO AN ACCURACY OF "?
D

350 PRINT
360 PRINT "FIRST TERN23"?A? TAB

0?"VALUE OF X = n?X
370 PRINT
380 PRINT "SUM "?S1?" NO, OF TE

RMS "IN
390 STOP

400 REM -ft^END PROGRAM**

Sample printout:

SUM OF EXPONENTIAL SERIES

TO AN ACCURACY OF .00001

FIRST TERM-1

VALUE OF X=1

SUM 2.7182815 NO. OF TERMS 10

Comment: Typical examples of other series that could be summed using

the same program are given below:

S=l+x + x2 + x3+.xn. . . if x<l

2 v4 2n

Cosx= 1 "2! + 4! ' ' ’ (" 1)n'(2^)T forallx

Sinx = x-fj + ^ (-l)".^~^forallx

S=l-x + x2-x3+.if x< 1

Now consider how you might improve upon this program. Ideally this

should have been considered at the planning stage and not after coding.

We should perhaps include a subroutine to correct the sum to the

appropriate number of decimal places or routines to enable the user to

check that input data is correct. We could LPRINT directly to the

printer for our hard copy printout, to avoid using COPY.

5. “GRAPH”

Problem: To produce a useful hard-copy graph of various functions

(Y = function X) in the positive quadrant (X and Y positive), with titles

and scales included.

Research the problem: The program must allow a variety of

functions to be plotted. Thus there must be an input or a line of the

program to be altered, according to the function which is to be plotted.

Titles are to be printed, as are scale values. Hence we need to know

the area of the screen in which we are to plot, and define the plotting

390

routine so that it keeps within this area. Indications of the scales should

be visible on the plot screen, to enable approximate values to be read

off. This will require inputs.

Scale factors must be established so that the points to be plotted are

within the defined area and good use is made of the available area, so

that the graph is not cramped. The capacity to calculate the values of

the dependent variable Y for a chosen range of X will be needed.

Alterations of the values of X, so that the derived range of Y may be

altered if necessary, should be possible within the program.

As in all graphing programs, some degree of inspection and choice is

required. In this case the requirement for scales to be printed requires

the input of suitable intervals to make the graph functional.

The program will hence require the following modules:

1 Input and calculation of function to be plotted. Revision of X

values and re-calculation if required.

2 Input of X, Y scale values and calculation of scale factors.

Printing of graph surround, titles, scale values.

3 Plotting of function.

Outline procedure:

Module 1: 1 Input: Function to be calculated.

Values of X to define range of X

required.

2 Calculation: Calculate and store in array values of

Y.

Find maximum and minimum values

of Y.

Scale factor for X axis.

3 Output: Maximum and minimum values of Y

for specified range of X.

4 Repeat 1 - 3 if required. User input to decide if required.

Module 2: 1 Input: Low and High X, Y values.

Scale values for X and Y axis divisions.

X, Y axis titles.

Graph titles.

2 Calculate: Scale factor for Y.

3 Output: Print titles, scale values, major scale

intervals.

Module 3: 1 Input: Values of Y stored in array.

2 Calculate: X, Y plot values, in accordance with

scale factors.

3 Output: Plot of function in specified area of

screen.

391

Detailed Procedure

The descriptive algorithm (with user notes) for obtaining the best

possible plot within defined scales is as follows. The user must be

presented with the information required to make decisions as to

suitable values for the X and Y axis scales.

1 Define range of values of X for which values of Y are to be

obtained.

1.1 Input minimum value of X (MINX).

1.2 Input maximum value of X (MX).

Note: Values of X should be chosen such that the scale divisions

correspond to values of X that will fit the defined purpose of the graph

(range of X required). Thus the range ofX would be chosen to suit the

major scale divisions of the ‘graph paper5 drawn by the program. We

would choose X to be plotted on a scale running from 0 to 5, to give

scale divisions of:

0 1 2 3 4 5

along the X axis, even though we were primarily interested in the plot

of Y with X in the range, say, 0.5 to 3.9, adapting the X values to the

constraints of the graph scales drawn on the screen. (See the sample

printout for these.) Similarly, we might choose X axis scale values of

0.4 0.5 0.6 0.7 0.8 0.9

to fit within the constraints of the display, even when the prime concern

was the plot of Y when X runs from 0.5 to 7.9.

1.3 The scale factor for X (DX) to be used in the calculation

loop to derive values of Y is then (Number of points to be

plotted on X axis/(Maximum X-Minimum X)). DX =

50/(MX - MINX) for the ZX81 and 200/(MX - MINX)

for the Spectrum.

2 Calculate values of Y for each value of X.

2.1 Set X equal to minimum value of X (MINX). Start

calculation loop.

2.2 FOR each plot division on X axis (1 to 50 on ZX81, 1 to 200

on Spectrum).

2.3 Calculate Y - (Function of X). Use VAL to calculate value

of function input as string.

2.4 Store value in array N (N(F) = Y).

2.5 Increment X for next plot point (X = X + DX).

2.6 NEXT plot point on X axis. End of calculation loop.

Note: The values of Y are now stored in array N. We now require to

know the minimum and maximum values of Y that have been

produced by the calculation. We must search the array N for these

values.

3 Search Array for Maximum and Minimum values of Y.

3.1 Set Maximum value and Minimum value variables

(MAXY and MINY) equal to first Array element.

(MINY = N(1),MAXY = N(l)). Start search loop.

3.2 FOR each element in array (N(2) to N(End)).

3.3 If array value is less than minimum value variable (N|(F)<

MINY) then set minimum Y variable equal to array

element (MINY = N(F)).

3.4 If array value more than maximum value variable, set this

variable equal to array element (MAXY ~ N(F)).

3.5 NEXT array element.

4 Inspect Range of Y.

4.1 Print maximum, minimum Y values (MAXY,MINY).

4.2 Present menu choice of: (i) Recalculating for a different

range of X. Program returns

to 1.1 if selected.

(ii) Choosing Y axis values.

Note: The user must now select the scale values for a range of Y such

that all values of Y are within the range chosen and maximum vertical

spread of plot points is achieved to avoid a cramped plot. This latter is

the sanie decision as was made for the X axis values. A suitable scale

must be chosen to conform with the scale divisions presented on the

screen. The Y axis has three scale sections, requiring four scale values

at the vertical divisions of the graph.

If MINY were 0.12 and MAXY were 3.6 for a given range of X, for

example, we might choose to set the minimum scale value for Y as 0,

and the maximum as 4.5, allowing intermediate values of 1.5 and 3.0,

which correspond to the scale divisions, so that the Y axis will be

labelled:

4.5

3.0

1.5

0
This gives the maximum vertical spread of plot points.

Having made this decision, the user can input the maximum and

minimum Y axis values. The decision can also be made to return to the

start of the first module and re-defme the values of X, choosing a

different range (choosing to calculate for X= 1.5 to 7.5, for example,

rather than the original choice of 0 to 6 for the range). This re¬

calculation can be done repeatedly until the best possible Y values for

placing on the graph have been found, within the constraints of the

ranges of X that are acceptable.

5 Derive scale factor for Y axis.

5.1 Input minimum Y for scale (Yl).

5.2 Input maximum Y for scale (Y2).

392 393

Note: These values are the same as will be inserted as scale values in
string form for printing on the display.

5.3 Scale value for Y plot is number of plot points on Y axis
divided by maximum Y minus minimum Y. This is
(DY = 30/(Y2 - Y1) for ZX81, 120/(Y2 - Yl)for Spectrum.)

Note: Next module of program inputs scale values as strings and the
strings for titles to be printed to the screen.

6 Input scale values and titles.
6.1 Input Minimum Y.
6.2 FOR each remaining Y axis scale division (2 to 4).
6.3 Input scale value to be printed.
6.4 NEXT Y axis scale division.
6.5 Print maximum and minimum X value (MINX and MX)

as reminder of X axis values.
6.6 FOR each X axis scale division (1 to 6).
6.7 Input scale value to be printed.
6.8 NEXT X axis division.
6.9 Input Graph title, Function or subtitle, X axis and Y axis

titles.

This algorithm is coded in the program as the subroutine (lines 1000 to
1680), called after initialisation of the arrays (lines 50 - 80). On return,
all necessary data has been input or calculated. The main program
prints the scale divisions on the ‘graph paper’ area of the screen, using
two sets of nested loops (lines 130 - 230), Note the bypass condition in
line 200 to prevent unwanted horizontal lines being printed.

Scales and titles are then printed to the appropriate screen locations
(lines 250 - 340).

The plotting routine (lines 350 to 380) takes each value from the
array N, finds the difference between this value and the defined
minimum Y value (Yl), and multiplies by the scale factor to get the Y
axis plot position. Plot position is adjusted by the addition of constants
to the X,Y values to be plotted, to place plot points within the graph
paper area. These are:

X axis: 10 on ZX81, 40 on Spectrum
Y axis: 13 on ZX81, 52 on Spectrum

The printout is obtained using COPY.

Variables Table

X$(6,4) Array to store X axis scale values (Input)
Y$(4,5) Array to store Y axis scale values (Input)
T$(4,25) Array for X, Y axis titles, graph titles (Input)
N(50) Array to store calculated Y values
F Loop variable

394

L Loop variable
F$ Function input as string
X Value of X
MINX Minimum value of X (Input)
MX Maximum value of X (Input)
DX Step value for X value in calculation
Y Value of Y calculated, Each value stored in Array N(50)
MAXY Maximum value of Y
MINY Minimum value of Y
M$ Menu choice (Input)
Yl Minimum value of Y axis scale (Input)
Y2 Maximum value of Y axis scale (Input)
DY Scale factor for plot of Y values

Flowchart “GRAPH”

395

396

Spectrum modifications:

The different plot screen of the Spectrum must be taken into account.
This affects scale factors and the actual plot routine, and requires a
larger array for the data (values of Y for the function of X).

In the same area of the screen, where the ZX81 has 50 X axis plot
points, the Spectrum has (4x 50), 200. The array N must thus be
initialised as N(200). The scale factors for Y and X also need to be
calculated according to this changed plot resolution. Line changes
needed are as follows:

80 DIM N(200)
360 FOR F - 1 TO 200
370 PLOT F + 40, (N(F) - Y1)*DY + 52

1120 LET DX = 200/(MX - MINX)
Delete lines 1135 and 1265
1150 FOR F= 1 TO 200
1230 FOR F = 2 TO 200
1380 LET DY = 120/(Y2 - Yl)
1390 Delete 30, Insert 120
1520 Delete 30, Insert 200

Spectrum users can also use the DEF FN and FN instructions to define
the function to be plotted (in line 1050) and to evaluate the function
within the calculation loop (line 1160). Revise the program to utilise
these functions when they have been dealt with in Section W.

Sample printout

4 a 53 “I •" “»««“*- *■“» *“=* «$" ■

•f 4- 4*

■f "f

YRX IS 4*

1*5
■¥
+ * 4* 4-
+ «P 4- +

4.
0 +

0 1«© Sa©
X

GRRPH PLOT OF ELOURT TOH

SIN X-fX

Program listing

lO REM "GRAPH"
20 REM ^PRODUCES GRAPH OF
30 REM ^FUNCTION WITH TITLES
40 REM #AMD SCALES FOR +VE

^QUADRANT

397

50 DIM X$(6»4)
60 DIM Y$<4>5)
70 DIM T*<4>25)
80 DIM NC50)
90 REM **G0SUB INPUTS**

100 GOSUB 1000
110 CLS
120 REM **PRINT PAPER**
130 FOR F=5 TO 30 STEP 5
140 FOR L=0 TO 15
150 PRINT AT L>F?"+"
160 NEXT L
170 NEXT F
200 FOR L=0 TO 15 STEP 5
205 FOR F=6 TO 29
206 IF F/5- INT (F/5) THEN NEXT
F
210 PRINT AT L»F;"
220 NEXT F
230 NEXT L
240 REM **TITLES»*
250 FOR F=1 TO 6'
260 PRINT AT 16i(F*5-1)IX$(F)
270 NEXT F
280 FOR F=1 TO 4
290 PRINT AT 20-F*5iOfY$(F)
300 NEXT F
310 PRINT AT 17> 5? T$ (3)
320 PRINT AT 18»0?"..

330 PRINT AT 19»5fT$(l)S AT 21>
8fT$C2)(1 TO 20)
340 PRINT AT 8»0lT$(4)(l TO 5)F
TAB 0fT*(4)(6 TO 10)
350 REM **PLOT FROM ARRAY **
360 FOR F=1 TO 50
370 PLOT F+10.(N(F)-Y1)*DY+13
380 NEXT F
390 GOTO 9999

1000 PRINT "GRAPH OF FUNCTION"
1010 PRINT >i "CALCULATION ROUTIN
E"
1020 PRINT "INPUT FUNCTION TO BE

, GRAPHED)IN"»"FORM Y=FUNCTION X.
II

1030 PRINT "FUNCTION ISu INPUT AS
STRING.”?"ERROR MAY RESULT IN E

-VALUATION’S "OF SOME FUNCTIONS. I
F THIS’S “HAPPENS?REPLACE STRING
INPUT’S ’’AND EVALUATION WITH INSE
RTED’S "PROGRAM LINES"
1050 INPUT F$
1060 CLS
1070 PRINT ? ?"LOW VALUE OF X?"
1080 INPUT MINX
1090 PRINT ? ? "HIGH VALUE OF X?"
1100 INPUT MX
1110 REM **SCALE FACTOR X**
1120 LET DXa50/(MX-MINX)
1130 REM **CALCULATE **
1135 FAST
1140 LET X”MINX

1150 FOR F~i TO 50
1160 LET Y= VAL F$
1170 LET N(F)=Y
1180 LET X”X^(1/DX)
1190 NEXT F
1200 REM **GET MAX?MIN Y##
1210 LET MAXY“N(1)
1220 LET MINY-N(i)
1230 FOR F=2 TO 50
1240 IF NCFXMINY THEN LET MINY”
N(F)
1250 IF MAXY<NCF) THEN LET MAXY"
N<F)
1260 NEXT F
1265 SLOW
1270 PRINT "MINIMUM VALUE FOR Y
IS: 'SHINY
1280 PRINT "MAXIMUM VALUE FOR Y
ISs 'SMAXY
1290 PRINT ??"CHOOSE SUITABLE VA
LUES FOR Y "5"AXIS <Y> OR RESTAT
E RANGE OF X "?”<X>? INPUT X OR
Y. "
1300 INPUT m
1310 CLS
1320 IF M$="X" THEN GOTO 1070
1330 REM **SCALE FACTOR Y**
1340 PRINT "INPUT NUMERIC VALUE
OF MIN.Y’S ” < <= "? MINY ?")FOR SCA
LE"
1350 INPUT Y1
1360 PRINT "INPUT NUMERIC VALUE
OF MAX. Y’S" C >= ’SMAXY?")"
1370 INPUT Y2
1380 LET DY=30/<Y2-Y1)
1385 REM ** Y AXIS SCALES **
1390 PRINT "Y AXIS HAS 3 SCALE D
IVISIONS? 'S "AND 30 PLOT POINTS. "
1400 PRINT "INPUT THE 4 SCALE VA
LUES FOR Y’S "AXIS. MAX 5 CHRS. "
1410 PRINT "NEWLINE FOR BLANK, "
1420 PRINT "MINIMUMC1)?"
1430 INPUT Y$(1)
1440 FOR F=2 TO 4
1450 PRINT "VALUE "?F?"?"
1460 INPUT Y$(F)
1470 NEXT F
1480 CLS
1485 REM **X AXIS SCALES**
1490 PRINT "INPUT X AXIS SCALES"
1500 PRINT "LOW X IS "?MINX
1510 PRINT "HIGH X IS "?MX
1520 PRINT ? ?"6 SCALE DIVISIONS?
50 PLOT POINTSON X AXIS."
1530 PRINT "SCALE VALUES MAX.4 C
HRS,"?"FIRST INPUT IS-LOW VALUE.
m

1540 FOR FS1 TO 6
1550 PRINT "SCALE VALUE "?F?,'?,,
1560 INPUT X$CF)
1570 NEXT F
1580 REM **TITLES**
1590 CLS

398 399

1600 PRINT "INPUT GRAPH TITLE CM
AX 25 CHRS)"
1610 INPUT T$ (1)
1620 PRINT "INPUT FUNCTION OR 8U
BTITLE C 20 " i11 CHRS MAX)"
1630 INPUT T$C2>
1640 PRINT "INPUT X AXIS TITLE C
20 CHRS MAX)"
1650 INPUT T$(3)
1660 PRINT "INPUT V AXIS TITLEC2
*5 CHRS)"
1670 INPUT T$<4>
1680 RETURN

9990 REM
9999 STOP

6. “ELEMENT”

Problem: To calculate for a chemical compound: (i) Percentage
elemental composition and molecular weight or (ii) molecular formula
from inputs of, for (i), Number of atoms each element and for (ii)
Percentages of each element. These are complementary calculations.

Research Problem: We require a program that performs two separate
operations. The common requirements will be the Element names,
symbols and molecular weights. We choose to input and store these as
data in arrays on the computer. This will require an input routine that
is not used every time the program is run, and could be edited out. The
elements involved should be capable of being changed to facilitate
different analyses, and this must be allowed for in our program. This is
an advantage over the alternatives of either defining all data with LET
statements or the use of DATA and READ (which are only available
on the Spectrum).

The program must be split into two processing sections. The first of
these (percentage elemental composition and molecular weight)
requires an input for the number of atoms of each element. We can use
a loop for this, using the loop variable to access the stored element
names. Molecular weight equals the number of atoms of each
compound multiplied by the atomic weight. This can be calculated
within the input loop. Molecular formulae are then derived from the
atomic symbol, plus the number of atoms, for each of the elements
concerned.

Percentage composition for each element is the number of atoms of
the element, times the atomic weight of the element, divided by the
molecular weight.

The second section of the program requires an input loop for the
percentage of each element. The proportion of atoms of each element
will then be the percentage divided by atomic weight. This can be
calculated within the input loop. To calculate the molecular formula,
we require to know the minimum (to give us the smallest number of

atoms of any of the elements) elemental proportion. We can check this
through another loop. The number of atoms of each element is then the
proportion of each element divided by the smallest proportion. We
could round this to integers, but will do so to two decimal places
because the actual molecular formula may be a multiple of the derived
formula. We should also indicate this possibility to the user.

Zero inputs will be required when elements do not occur in the
compound concerned.

For a common organic analysis the following data will be stored via
the input routine:

HYDROGEN H 1.008
CARBON G 12.01
NITROGEN N 14.008
OXYGEN O 16.00
PHOSPHOROUS P 30.98
SULPHUR s 32.06
CHLORINE CL 35.457
BROMINE BR 79.916

The data entry module is keyed in and the data input as above. The
lines 15 to 160 could then be deleted if required, leaving the data stored
in the arrays and available for access, as long as RUN is not used (or
CLEAR). Spectrum users should replace line 3000 with: 3000 SAVE
“ELEMENT” LINE 3010. The program is then SAVEd to tape by
using GOTO 3000, when it stops at line 1990, or run again by keying
in GOTO 200 as a command.

You may like to derive an additional user dialogue to ask if the user
wishes to SAVE or re-run the program, and according to the response,
send control to the relevant line number. The procedure for the
program is given below.

Detailed Procedure’.

1 Data Entry Module
1.1 Dimension arrays for data: Element Names, Element

Symbols, Atomic Weights
1.2 FOR each input (1 to 8)
1.3 Input Name, Symbol, Atomic Weight
1.4 GOTO subroutine to justify atomic weight (5 below)
1.5 NEXT input
1.6 Print user warning about the use of RUN

2 Menu
2.1 Print Instructions and Menu
2.2 If second calculation required, GOTO 4
2.3 If first calculation required, proceed to 3

400 401

3 Percentage Element Calculation
3.1 Input:

3.1.1 Reference for compound
3.1.2 Initialise arrays, molecular weight variable
3.1.3 FOR each Element (1 to 8)
3.1.4 Input number of atoms present
3.1.5 Calculate total molecular weight (Molecular weight

plus (number of atoms * atomic weight))
3.1.6 NEXT Element

3.2 Processing/Output:
3.2.1 Print Reference, Molecular Weight
3.2.2 FOR each Element (1 to 8)
3.2.3 Print Symbol, number of atoms
3.2.4 NEXT Element
3.2.5 FOR each Element (1 to 8)
3.2.6 If no atoms present, GOTO 3.2.10
3.2.7 Calculate percentage as (Number of atoms times

atomic weight) divided by molecular weight of
compound, times 100

3.2.8 GOSUB (5) for rounding and justification of results
3.2.9 Print Element symbol, percentage
3.2.10 NEXT Element

4 Molecular Formula Calculation
4.1 Input:

4.1.1 Reference for compound
4.1.2 Initialise Arrays
4.1.3 FOR each Element (1 to 8)
4.1.4 Input percentage present
4.1.5 Calculate proportion of Element as percentage

present divided by atomic weight
4.1.6 NEXT Element

4.2 Processing/Output:
4.2.1 Print reference
4.2.2 Set C = 100 for percentage calculation
4.2.3 FOR each Element (1 to 8)
4.2.4 If proportion is zero, GOTO 4.2.6
4.2.5 If proportion less than current value of C, then let C

equal proportion of element
4.2.6 NEXT Element
4.2.7 FOR each Element (1 to 8)
4.2.8 If proportion is zero, GOTO 4.2.12
4.2.9 Number of atoms equals proportion divided by

smallest proportion present, C
4.2.10 GOSUB (5) for rounding and justification to 2 d.p.
4.2.11 Print Symbol, number of atoms
4.2.12 NEXT Element
4.2.13 Print user warning that multiples of this calculated

formula may be the actual formula

402

5 Subroutine to Round and Justify
(Input of number of decimal places (P) and number to be
justified (N) from data defined in main program modules)

5.1 X$ set to contain P zeros
5.2 Integer value set as XN
5.3 Decimal value set as XD
5.4 Define X$ as rounded number string
5.5 X$ returned to main modules for printing

6 Auto-run. An automatic RUN routine using GOTO 200 is used to
prevent the user entering RUN accidentally after LOADing

Variables Table

1) Input and main program sections:
E$(8,10) Holds element names
S$(8,2) Holds element symbol
M(8) Holds atomic weight
E Loop variable in main program
X Loop variable in input routine
A$ Menu choice
R$ Reference for compound
MOLWT Molecular weight
A(8) Holds input of number of atoms of element
P(8) Holds input or calculated percentage of element
N(8) Holds calculated number of atoms of element
C Constant for calculating percentages

2) Round and justify subroutine:
N Holds number for operation of subroutine
X$ Holds string form of number returned by subroutine
XN Holds integer value of N
XD Holds decimal value of N
F Loop variable in subroutine

403

Flowchart “ELEMENT”

FOR EACH

ELEMENT

FOR EACH

ELEMENT

404

Program Listing

10 REM “ELEMENT"
15 REM ***********************

L DATA ENTRY- ROUTINE
CAN BE DELETED WHEN
ENTRY COMPLETE,

20 DIM E$<8?10)
30 DIM S$(S? 2)
40 DIM M(8)
50 PRINT “ ELEMENT SYMBOL
MOL- WT. '*
55 PRINT
60 FOR X-l TO 8
65 REM ** ELEMENT NAME **
70 INPUT E$(X)
75 REM ** ELEMENT SYMBOL **
80 INPUT 3$<X)
85 REM ** ATOMIC WEIGHT **
90 INPUT M(X)
95 REM *INITIALISE FOR GQSUB**

100 LET P=3
110 LET N=MC X)
120 GOSUB 2000
130 PRINT X? TAB 3?E$<X)J TAB 1

4? S$< X)? TAB (27- LEN X$>?X$
140 PRINT
150 NEXT X
160 REM

CLINES 15 TO 160 CAN BE
DELETED AFTER DATA ENTRY
AND REST OF PROGRAM ENTERED
MUST USE *GOTO 200* TO USE
PROGRAM?NOT RUN?TO PRESERVE
DATA-

170 REM **END 1. **

180 REM
200 REM ***********************

2- PROGRAM MENU TO
CHOOSE CALCULATION

210 PRINT "CHOOSE CALCULATION R
EQUIREDs-"
220 PRINT
230 PRINT "TO INPUT NUMBER OF A

TOMS AND GETPERCENTAGE ELEMENT C
OMPOSITION AND MOLECULAR WEIGHT
INPUT EM
240 PRINT
250 PRINT "TO INPUT PERCENTAGE

ELEMENT ANA-LYSIS AND GET MOLECU
LAR FORMULA INPUT M"

260 INPUT A$
270 IF A$ <> "E" AND A$ <> “M"

THEN GOTO 260
280 CLS
290 IF A$”"M" THEN GOTO 1000

405

295 REM *# END 2. **
#######*#*######***

******#*#*#*######*#*#**
3.PERCENT ELEMENT
*#***##*####**###*####*#

300 PRINT “ENTER REFERENCE FOR
THE COMPOUND*1

310 INPUT R$
320 REM ## INITIALISE ##
330 DIM A(8)
340 LET MQLWT-0
350 DIM FIS)
360 FOR E=1 TO 8
370 PRINT "NUMBER OF ATOMS OF "

r E$IE)? “?“
380 INPUT AIE)
390 LET MOLWT=MOLWT+(A<E)*M<E>)
400 NEXT E
410 CLS
420 REM **CALCULATE AND PRINTS

**RESULTS **

430 PRINT "“MOLECULAR WEIGHT AND
COMPOSITION********************

#####*#*####“
440 PRINT
450 PRINT "REFs“J R$
460 PRINT
470 PRINT “MOL, WEIGHT™ “? MOLWT
480 PRINT
490 PRINT “MOL. FORMULAS "?
500 FOR E“1 TO 8
510 IF AIE)>1 THEN PRINT S$IE)?

AIE) ?
520 IF AIE)~1 THEN PRINT 8$<E>?

ii K.

530 NEXT E
540 PRINT "m
550 FOR E=1 TO 8
560 IF A IE)“0 THEN GOTO 620
565 REM CALCULATE PERCENTAGES#

570 LET P<E>=ACE)*MCE)/MOLWT#
100

575 REM *INITIALISE FOR ROUND**
**SUBROUTINE *#

580 LET N=PIE)
590 LET P=2
600 GOSUB 2000
610 PRINT “PERCENT "?S*IE>? TAB
<18- LEN X$)?X$
620 NEXT E
625 REM *#COPY HERE FOR PRINTED

**RE8ULTS *#

630 GOTO 1800

640 REM ## END 3. **
###****#**##*#**##**

650 REM
990 REM ***********************

4. MOLECULAR FORMULA
##***#****##**#####*#*#

1000 PRINT “ENTER REFERENCE FOR
COMPOUND"
1010 INPUT R$
1020 REM ##DIM ARRAYS#*
1030 DIM PIS)
1040 DIM N<8)
1050 PRINT
1060 REM **INPUT PERCENTAGES##

1070 FOR E=1 TO 8
1080 PRINT "PERCENT OF “?E*IE>?“

•■jn

1090 INPUT PIE)
1095 REM **CALCULATE PROPORTION*

1100 LET NIE)=PCE)/MIE)
1110 NEXT E
1120 CLS
1130 REM **CALCULATE AND PRINT**

*#RESULTS **

1140 PRINT “*MOLECULAR FORMULA*"
t TAB 0?“*****#*#**#********"
1150 PRINT
1160 PRINT “REFs"?R$
1170 PRINT
1175 REM **CALCULATE MINIMUM **

**PROPORTION ELEMENT **

1180 LET 0=100
1190 FOR E=1 TO 8
1200 IF NIE)=0 THEN GOTO 1220
1210 IF NIEXC THEN LET C=N!E>
1220 NEXT E
1225 REM ##DERIVE FORMULA *#

1230 FOR E=1 TO 8
1240 IF NIE)=0 THEN GOTO 1290
1250 LET P=2
1260 LET N=NIE)/C
1270 GOSUB 2000
1280 PRINT S$!E)i TAB 8- LEN X$?
U
1290 NEXT E
1295 REM **COPY HERE FpR PRINTED

*#RE8ULT8 **

1300 PRINT ? ?“MULTIPLES OF THIS
FORMULA MAY"?“BE THE ACTUAL FORM
ULA IF AT “?“LEAST 2 ATOMS OF EA
CH ELEMENT"?“PRESENT"

406 407

1320 REM
#* END 4. *#

1780 REM
1790 REM

#ENDRUN INSTRUCTIONS#

1800 PRINT AT 20,0?"USE GOTO 200
TO RUN AGAIN. %"USE GOTO 3000 T

0 SAVE"
1810 STOP

1820 REM
**** end program ****

1830 REM

2000 REM **##*##***#**##*#*#****
5. SUBROUTINE TO ROUND

AND JUSTIFY
##*#*##*##**#####*###**

2010 LET X$=""
2020 FOR F=i TO P
2030 LET X$=X$+"0"
2040 NEXT F
2050 LET XN= INT N
2060 LET XD= INT (10 ## P*<N-XN>
4-0. 5)
2070 LET X$= STR$ XN+". "+CX$<1 T
0 P- LEN STR$ XD)+ STR$ XD+X*><1

TO P)
2080 RETURN

2090 REM ## END SUB **

2980 REM
2990 REM **#**#*#*****##**###***

AUTO-RUN ROUTINE

3000 SAVE "ELEMENT"
3010 GOTO 200

3020 REM ** END PROGRAM LIST #*

7. “GASSFILE”

Problem: To write a program which will store and manipulate the data
concerned with cassette program listings and print out lists of these
files. The data must be able to be updated. Cassette labels should be
printed out, taking advantage of the fact that the Sinclair printer paper
is the correct width for this.

Research the problem: The program must have data entry and
and storage for relevant data. This data must be displayed on screen
and printed out if required. There must be a facility to add, delete and
revise each portion of data separately. Data must be stored in string
and numeric arrays, and there should be protection from accidental

clearing of the stored data by the use of RUN. However, since more
data may be required to be stored than will fit in one set of arrays, there
should be also a facility to clear the file data arrays deliberately, to
allow a new file system to be set up. Any other variables must be
defined by LET statements, and all variables re-initialised after
CLEAR has been used.

The best method of setting up a structure for this type of program is
to have a menu presented to the user. From the menu, control can be
passed to a separate module of the program which will perform the
appropriate manipulations. After each set of operations have been
performed, control will pass back to the menu module, which is the
main program, looping back after each call (via a GOSUB or GOTO
instruction) of the other program modules.

Outline Procedure:

1 Initialise storage arrays, variables, strings.
2 Present menu options.
3 Pass control to selected area of program.
4 Required are program modules to:

Input data (create a file)
Print a file (screen and printer)
Revise a file
Delete a file
Print cassette label
Erase all files

Control returns to (2) on completion of each operation.
5 Adding a Save files procedure will enable an auto-run system to

avoid the risk of using RUN, and wiping out data.

Detailed Procedure:

1 Define the data to be held, its form, variables needed in the
program, and strings to be used by one or more program sections
to print titles for data. Initialise arrays, variables, strings. (See
data table below.) This module is processed only once for each
file system.

2.1 Present Menu: 1 Create File
2 View/Print File
3 Revise File
4 Delete File
5 Print Cassette Label
6 Save Files
7 Erase all Files

2.2 Loop back to start of Menu. If CLEAR has been used in 4.7,
loop to (1).

408 409

3 Go to chosen program section. Use subroutines unless this causes
problems.

4.1 Create File.
4.1.1 Define file number (existing files +1)
4.1.2 Input data
4.1.3 Increment file count
4.1.4 Sub-menu: View created file (GOSUB 4.2)

Create another file (GOSUB 4.1)
Menu (RETURN)

4.1.5 Return to Menu
4.2 View/Print File

4.2.1 Get file number to view
4.2.2 Print file contents on screen
4.2.3 Sub-menu: Print file to printer (COPY)

View next file (GOSUB 4.2)
Menu (RETURN)

4.2.4 Return to Menu
4.3 Revise File

4.3.1 Get file number to revise
4.3.2 Print each item on screen
4.3.3 Input new data if required, leave if correct
4.3.4 Print new data if input
4.3.5 Return to Menu

4.4 Delete File
4.4.1 Get file number to delete
4.4.2 Print basic file data (name, reference)
4.4.3 Confirm deletion
4.4.4 Delete file contents
4.4.5 Swap data from files of higher number to maintain file

numbering as sequence
4.4.6 Print new file numbers and basic data (reference and

name)
4.4.7 Sub-menu: Copy new file listing (COPY)

Menu (RETURN)
4.4.8 Return to Menu

4.5 Print Cassette Label
4.5.1 Get file number
4.5.2 Print file contents on printer in suitable form
4.5.3 Return to Menu

4.6 Save Files
4.6.1 Allow revision of program name (string)
4.6.2 Allow return to menu if error
4.6.3 Stop program until cassette ready
4.6.4 Save ‘program name string’
4.6.5 GOTO Menu (prevent use of RUN)

Note that this module cannot be a subroutine. Auto-run routines on

the ZX81 do not operate from within subroutines properly, so control
must be passed with GOTO instructions. This procedure is modified
for the Spectrum (see notes below).

4.7 Delete all files
4.7.1 Confirm deletion
4.7.2 Use CLEAR to delete data
4.7.3 Set marker for re-initialisation of variables on Return to

Menu
4.7.4 Return
This cannot be a subroutine on the Spectrum (see notes below).
The marker informs the main program loop that control must be
passed to module (1) for re-initialisation.

Each section of the program must then have the detailed procedures,
including input checks, defined. Each area of the program can be
treated as a program module for coding purposes. The sections must
operate on the same data structures, so the first task is to define the
arrays for the data, variables required, and strings for printing, so that
a table of these may be used in developing each section of program.

Data Table

C$(10,4)
N$(10,15)
P$(10,10,15)

T(10,10,2)

F

TF
M$
M
S$
N,L
E$
A$,B$,F$,G$
H$,I$,X$,Y$,Z$
X

Holds cassette reference (any four characters)
Holds cassette name (15 characters)
Holds for each cassette file 10 program names (15
characters)
Holds for each program on each cassette tape
counter readings (Start and Finish, numbers
assumed to be in range 0 - 999)
File number of file being manipulated in
processing
Total number of files (up to 10)
String input from menus
Numeric input from menus
Current file program name
Used as loop control variables
Set as empty string for overprinting

Used as string literals for printing
Marker to show CLEAR has been used and hence
that re-initialisation of variables and arrays is
required.

Another consideration is whether recursive or nested subroutines
should be used. Care must be taken in the use of these facilities, and
unnecessary complication should be avoided, since all control is passed
back to the Menu, from which all modules can be accessed. However,

410 411

in the program recursion is used in the Create File routine to allow a
sequence of data entries to be made (Line 1280), and (Line 2300) in the
View File routine to allow stepping through the files.

The View File routine is also available as a nested subroutine from
the Create File routine to allow a newly created file to be viewed (Line
2020). Apart from these instances a simple GOSUB - RETURN
pattern of control has been followed, and the control flow in the Save
Files routine has the same structure, but using GOTO instructions for
the reason stated above. The different action of the CLEAR instruction
on the Spectrum requires a GOTO instruction for the Erase All Files
module (see below).

Ten files are set up and manipulated in this program. Reference to
the way variables are stored (Section T) will enable you to discover the
memory required for this. The same section has the PEEK routine to
discover program size. Work these out. You will find that the program
could in fact store and manipulate up to 30 such files on the ZX81.
Display file size will restrict the 16k Spectrum user to ten files, as in the
program.

The main program flow is illustrated in the first flowchart. The
nested and recursive structures in the program are illustrated in the
second, with the sub-menu control structures also shown. Sub-menus
include a “Return to Main Menu” option.

Flowchart “CASSFILE”

1. Main Program Flowchart

CONTINUES SAVED

PROGRAM ON

LOADING

3000
REVISE

FILE

GOTO MODULE

ON SPECTRUM

412 413

2. Recursion and Nesting the Create File and View File Subroutine

ENTER CREATE
FILE SUB¬
ROUTINE
(LINE 1000)

LINE 1230

RESPONSE "F"
- CREATE
ANOTHER FILE

RECURSIVE
GOSUB

RESPONSE
"V" = VIEW
CREATED FILE

CALLS VIEW
FILE MODULE
AS NESTED
SUBROUTINE

414 415

MENU

416

"F" = VIEW NEXT

FILE

CHECKS IF FILE
EXISTS

RECURSIVE

'GOSUB

Spectrum Modifications'.

1 The Spectrum has a simplified auto-run procedure and printing
the prompts is done automatically. Make the following line
changes:

9950 PRINT “PRESS A KEY FOR SAVE ROUTINE”
9960 PAUSE 0
9970 SAVE S$ LINE 9980

This whole module (lines 6000 onwards) could be a subroutine on
the Spectrum (unlike the ZX81, it will SAVE from a
subroutine), but it should then be a self-contained subroutine,

417

without the jump at line 6100. The placing of the auto-run

routine at the end of the program is done so that it is more visible

to the user, since there is not a STOP or Program End.

2 Replace SCROLL in lines 3090, 3150, 3170, 3230, 3250, 3265,

3420 and 3495 by POKE 23692, - 1.

3 The Spectrum wipes the GOSUB stack when CLEAR is used.

This means it will not have a location stored to RETURN to.

The Erase All Files module must therefore use GOTO

statements:

325 IF M = 6 OR M = 7 THEN GOTO M* 1000

7090 GOTO 350

Program Listing

5 LET S$=”CASSFILE#1"
10 REM "CAS8FILE"
20 DIM C$<10?4)
30 DIM N$(10?15)
40 DIM P$<10?10?15)
50 DIM 1(10?10?2)
60 LET X=0
70 LET F=0
80 LET E*=”

ti

90 LET A$="CASSETTE REFi "
100 LET B$="CASSETTE NAME"
110 LET F$="FILE NO. "
120 LET G$="PROGRAM NAME"
130 LET H$="TAPE COUNT"
140 LET I$="FROM TO"
150 LET TF=0

180 LET Z$="l
I"

190 REM ********
191 REM **MENU**
192 REM ********
200 PRINT S$
210 PRINT TAB 10?"MENU"
220 PRINT
230 PRINT "1. CREATE FILE"

,240 PRINT »i"2. VIEW/PRINT FILE

250 PRINT i»"3. REVISE FILE"
260 PRINT »i"4. DELETE FILE"
270 PRINT ,,"5. PRINT CASSETTE

LABEL"
280 PRINT .»"6. SAVE FILES"
290 PRINT »."7. ERASE ALL FILES

II

300 PRINT ??"INPUT YOUR CHOICE”
310 INPUT M
320 IF MCI OR M>7 THEN GOTO 300
325 IF M=6 THEN GOTO 6000
330 CLS
340 GOSUB M#1000

418

350 CLS
355 IF X = 1 THEN GOTO 20
360 GOTO 210

990 REM #*##*##*#*#*****#**#*#
CREATE FILE SUB ##
##########**##**##*###

1000 LET F=TF+i
1010 IF F <- 10 THEN GOTO 1020
1015 PRINT "##N0 SPACE FOR ANOTH
ER FILE##”? ? ?"ON RETURN TO MENU
CHOOSE SAVE”?"OPTION TO KEEP CUR
RENT FILES”?"THEN ERASE FILES AN
D START NEW"?"FILE ARRAY. "
1016 PAUSE 300
1017 RETURN

1020 PRINT "READY TO CREATE FILE
NO. " r F

1030 PRINT AT 2?0?"INPUT CASSETT
E REF. (4 CHRS MAX)"
1040 INPUT C$CF)
1050 PRINT AT 2?0?E$? AT 2?0?B$?
"?(15 CHRS MAX)”
1060 INPUT N$(F)
1070 PRINT AT 2?0?E$? AT 2?0?"IN
PUT PROG.NAMES AND TAPE COUNTS"
1080 PAUSE 300
1090 FOR N-i TO 10
1100 PRINT AT 4?0?"PROGRAM ”?N
1110 PRINT Q$?" ? (15 CHRS MAX)”
1120 INPUT P$(F?N)
1130 PRINT AT 5? 0? E$? AT 5?0?H$?
” FROM ?"
1140 INPUT T(F?N? 1)
1150 PRINT AT 5? 11?"TO ?
1160 INPUT T(F?N?2)
1170 PRINT AT 5? 0? E$? AT 5?0?"AN
OTHER PROGRAM ?(Y/N)"
1180 INPUT M$
1190 IF M$”"N" THEN GOTO 1220
1200 IF M$ <> "N" AND M$ <> "Y"
THEN GOTO 1170
1210 NEXT N
1220 CLS
1225 LET TF-TF-U
1230 PRINT "CREATE ANOTHER FILE
(F)?VIEW”?"CREATED FILE (V) OR M
ENU (M)?”?”INPUT F? V OR M. "
1240 INPUT m
1250 IF m <> "F" THEN GOTO 1290
1260 LET F“F+1
1270 CLS
1280 GOSUB 1020
1290 CLS
1295 IF M$S"V" THEN GOSUB 2020
1300 RETURN

1980 REM #####################
1990 REM ### VIEW FILE SUB ## #
1991 REM ######^##############
2000 PRINT "WHICH FILE NUMBER?"
2010 INPUT F

419

2015 REM GENTRY FROM OTHER SUBS
**
2020 CLS
2030 IF TF <> 0 AND F <= TF AND
F >= 1 THEN GOTO 2110
2040 PRINT “NO FILE WITH THAT NU
MBER"
2050 PRINT "MENU CM) OR VIEW OTH
ER FILE CV>"
2060 INPUT M$
2070 IF M$s"V" THEN GOTO 2000
2080 IF M$="M" THEN RETURN
2090 PRINT "FOLLOW INSTRUCTIONS
PLEASE,"
2100 GOTO 2050

2110 CLS
2120 PRINT F$?F
2130 PRINT i»A$?C$<F)
2140 PRINT "********************
************"
2150 PRINT 0$? TAB 20?H$? TAB 20
r 1$

2160 PRINT "------

2170 FOR N”1 TO 10
2180 PRINT N?"?P$(FiN)? TAB 20
? TCF» N?1)? TAB 26? TCF? N? 2)
2185 NEXT N
2190 PRINT AT 21 ? 0 ?"PRINT < P)? NEX
T FILECF)10R MENUCM)"
2200 INPUT m
2210 PRINT AT 21iO?E$
2220 IF M$="P" THEN COPY
2230 IF m <> "F" THEN GOTO 2310
2240 LET F=F+1
2250 IF F <“ TF THEN GOTO 2300
2255 CLS
2260 PRINT "**NQ FILE OF HIGHER
NUMBER**"
2270 PAUSE 150
2280 CLS
2290 GOTO 2310

2300 GOSUB 2020
2310 RETURN

2980 REM *******************
2990 REM **REVISE FILE SUB**
2995 REM *******************
3000 PRINT "WHICH FILE TO REVISE

?<1 TO 10"
3010 INPUT F
3020 IF F <= TF THEN GOTO 3060
3030 PRINT "NO SUCH FILE"
3040 PAUSE 150
3050 RETURN

3080 PAUSE 150
3090 SCROLL
3100 PRINT A$?C$CF)
3110 INPUT m
3120 IF M$="" THEN GOTO 3170
3130 LET C$(F)
3140 CLS
3150 SCROLL
3160 PRINT "NEW "?A$?C$CF)
3170 SCROLL
3180 PRINT B$?" "?N$CF)
3190 INPUT M$
3200 IF M$="" THEN GOTO 3265
3210 LET N$CF)=M$
3220 CLS
3230 SCROLL
3240 PRINT A$?C$CF)
3250 SCROLL
3260 PRINT "NEW CASS. NAME "?N$CF
)
3265 SCROLL
3270 FOR N=1 TO 10
3380 PRINT "PROG. "?N?" NAME "?P$
C F ? N)
3390 INPUT m
3400 IF m <> "" THEN LET P$CF»N
)=M$
3410 PRINT AT 21i0?"PROG. "?N?" N
AME 11 ? F’$ (F? N)
3420 SCROLL
3430 PRINT AT 21 >0?"TAPE FROM:"?
TCP? N?1)
3440 INPUT M$
3450 IF M$ <> "" THEN LET TCFiNi
1) = VAL M$
3460 PRINT AT 21 >0?"TAPE FROM:"?
TCFi N?1)? " TO:"? T<Fj N»2)
3470 INPUT m
3480 IF m <> "" THEN LET TCF?Ni
2) = VAL m
3490 PRINT AT 21 iO?"TAPE FROM:"?
TCFiN?1)?" TG:"?TCFiNi2>
3495 SCROLL
3500 NEXT N
3510 RETURN

3990 REM ********************
4000 REM **DELETE FILE SUB**
4001 REM ********************
4010 PRINT "WHICH FILE DO YOU WI
SH TO"t"DELETE ? Cl TO 10)"
4020 INPUT F
4030 IF F <= TF AND F >= 1 THEN
GOTO 4070
4040 PRINT "**NQ FILE OF THAT NU
MBER**"
4050 PAUSE 150
4060 GOTO 4430

3060 CLS
3070 PRINT "FILE "?F?" DETAILS W
ILL BE PRINTED."PRESS NEWLIN
E IF CORRECT" •» "INPUT NEW DETAILS

IF REQUIRED. "

4070 PRINT F$? FiiA$? CF)
4080 PRINT B$?" "?N$CF)
4090 PRINT AT 10*0?"INPUT D TO C
ONFIRM DELETION'S i»"OR M FOR MEN
U. "

420 421

4100 INPUT m
4110 IF m <> "D" THEN GOTO 4430
4120 PRINT AT 14,0?"ALL FILES WI
TH NUMBERS >"?F,"WILL HAVE THEIR

FILE NUMBERS’*, "REDUCED BY ONE.”
4125 IF F”TF THEN GOTO 4220
4130 FOR N^F TO TF-i
4140 LET N$<N)=N$<N+1)
4150 LET C$<N)=SC$(N+1)
4160 FOR L=*l TO 10
4170 LET P$<N,L)=P$<N+1,L)
4180 LET T(N,L»1)-T<N+1,L,1)
4190 LET T<N,L,2)sT(N*l,L,2)
4200 NEXT L
4210 NEXT N
4220 LET C$(TF)=E$
4230 LET N$(TF)=E$
4240 FOR N=1 TO 10
4250 LET P$(TF, N)-E$
4260 LET T(TF,N,1)^0
4270 LET TCTF, Ni2)-0
4280 NEXT N
4290 LET TF“TF“1
4300 CLS
4310 PRINT “FILE DELETED”
4320 PRINT ,, ’’NEW FILE LISTINGS ”
4330 PRINT
4340 FOR N=1 TO TF
4350 PRINT F$?N?" "?A$?C$<N)
4360 NEXT N
4370 PRINT AT 21f0;"COPY NEW LIS
T (C) OR MENU <M)”
4380 INPUT m
4390 IF M$ <> ”C” THEN GOTO 4430
4400 PRINT AT 21,0?E$
4410 COPY
4420 CLS
4430 RETURN

4990 REM #####################
5000 REM ** PRINT LABEL SUB###
5010 REM #####################
5020 PRINT "WHICH FILE DO YOU WA
NT TO PRINT'S,, "AS A CASSETTE LA
BEL?< 1 TO 10)"
5030 INPUT F
5040 IF F >s 1 AND F <= TF THEN
GOTO 5090
5050 PRINT "##N0 FILE OF THAT NU
MBER##"
5060 PAUSE 150
5070 CLS
5080 GOTO 5280

5090 PRINT ,,"FILE "?F?" WILL NO
W BE PRINTED. "CHECK PRINTER,
HIT A KEY TO START"
5100 IF INKEY$ THEN GOTO 510
0
5120 LPRINT X$J"I" ? A$? C$<F)? TAB

20? F$?F? TAB 31?" 1"
5130 LPRINT Z*? “I"?B$?" "?N$(F>?

TAB 31?" I"

5140 LPRINT Z$?X$?"I"?0$? TAB 20
?“I"? H$? TAB 31?"I"
5150 LPRINT ”1"? TAB 20?"!"?!$?
TAB 31?" I"
5160 LPRINT X$
5170 FOR N=1 TO 6
5180 LPRINT "I " ? N?" "?P*<F,N>? T
AB 21? T(F,N,1)? TAB 25?TCF,N,2)?

TAB 31? " I" ? Z$
5190 NEXT N
5200 LPRINT Y$? X$
5210 LPRINT "i "?A$?C$CF)? TAB 20
?F$?F? TAB 31? "I"
5220 LPRINT Z$?"I "?B$?" "? N$(F)?

TAB 31?" I"
5230 LPRINT Y$?X$
5240 FOR N“7 TO 10
5250 LPRINT "1"?N?" "?P$(F,N)? T
AB 21? TCF,N,1)? TAB 25?TCF,N,2)?

TAB 31?" I"? Z$
5260 NEXT N
5270 LPRINT Y$
5280 RETURN

5990 REM ##***##***##**#***#**
6000 REM ## SAVE FILES PROC ##
6001 REM #*****###*#*****#**#*
6005 CLS
6010 PRINT "SAVE FILES ON TAPE R
OUTINE"
6020 PRINT ,,"CURRENT PROGRAM NA
ME IS"
6030 PRINT ,,.. "?S$?" "" "
6040 PRINT ,,"INPUT A NEW NAME F
OR THIS ","PROGRAM FILE OR PRESS

NEWLINE'S "ONLY TO SAVE WITH CUR
RENT NAME."
6050 PRINT ,, "INPUT M FOR MENU"
6060 INPUT m
6070 IF M$S="M" THEN RETURN
6080 IF M$="" THEN GOTO 9900
6090 LET SsM
6100 GOTO 9900

6990 REM #######################
7000 REM #*DELETE ALL FILES SUB#

#######################
7010 PRINT "INPUT D TO CONFIRM A
LL FILES","ARE TO BE DELETED."
7020 PRINT ,, "INPUT M TO RETURN
TO MENU. ”
7030 INPUT m
7040 IF M$ <> “D” THEN GOTO 7080
7050 CLEAR
7060 PRINT ,,"INPUT NEW NAME FOR

THIS FILE"
7070 INPUT S$
7080 LET X=1
7090 RETURN

9890 REM #####################
9900 REM ## AUTO“RUN ROUTINE #
9901 REM #####################

422 423

Sample Printout',

9910 CLS
9920 PRINT "PROGRAM NAME IS "
9930 PRINT .?S$?" "" “
9940 PRINT "**NOTE IT DOWN**"
9950 PRINT ii"SET CASSETTE TO RE
CORD7 AND THEN"7"PRESS A KEY TO
SAVE. "
9960 IF INKEY$ ="" THEN GOTO 996
0
9970 SAVE S$
9980 CLS
9990 GOTO 200

FILE NO.1

CASSETTE REF:APP1
£#&*****&&****&***********&*****
PROGRAM NAME TAPE

FROM
COUNT

TO

l.GRflPHPLOT S as
£.RESIST 3© e©
3„5TRINGSORT OS e©
4- * © ©

© ©
6, © ©
7. © ©
8* © ©
9 . © ©

B ©

|CASSETTE REP,- RPPX FILE NO,! 5

I CASSETTE NAME APPLICATIONS*! |

PROGRAM NAME |TAPE COUNTl
I FROM TO 1

X GPRPHPLUT S as
la RESIST 3S s©
|3 STRXNGSORT ©5 30

4, © 0

s © 0

6 0 0

CASSETTE REF; APP1 FILE

CASSETTE NAME APPLICATIONS*! §

7 © 0 |

8 © 0

9 0

10 0 0

Comments:

This is a fairly long program. Work through the listing, checking you

understand the operation of the algorithm within each program

module. The individual manipulations of arrays and lists have all been

encountered before, and each program module performs a different

operation on the arrays and lists holding the data. The program is not

by any means ‘idiot-proof, although it is reasonably ‘user-friendly>

and you should note the various input checks used. The program can

be crashed by inputs of bad (non-numeric) data into the numeric array

holding the tape counter listings, and the main menu. Any file number

request is checked.

The input (string or numeric) from menus is checked, in different

ways. Either another input is requested, or a default return to the main

menu operates. Data correction is dealt with by the View File and

Revise File modules.

The program could be improved in two obvious ways. The first

improvement would be a search routine to find and display the cassette

file containing a desired program. A new module, 8 in the main menu

and line 8000 onwards in the program listing, could be added to

perform this operation.

The second is that you cannot both print a file (in the View/Print

File module) and then step through for the next file, since after printing

the program automatically returns to the menu. Consider how you

would modify the flow of control in lines 2190 to 2310 to allow this.

Notice as a final point that data manipulation programs are long, not

necessarily because of the processing manipulations themselves, but

due to necessary input checks and user dialogue.

The program can be easily revised for use with your audio cassette

library, or other filing purposes.

The program examples included in this Unit have been selected to

illuminate the various structured programming techniques discussed in

the rest of the book. In order to demonstrate the maximum number of

these techniques being used in practice, it proved necessary to give the

programs a strong scientific applications bias. Home users will

doubtlessly be dismayed to discover that there is little in this part of the

book which will be of practical use to them. However, it is important

that they understand the principles behind the programs in this Unit,

even if they do not actually key them in.

As far as games and home applications programs are concerned, the

Program Library at the end of the book (Appendix VI) should provide

readers with enough examples to enable them to write their own

programs tailor-made to their particular interests.

V4: Games Programming

Games are applications programs which are not of a type which fulfils a

424 425

specific purpose in a functional context; that is to say they are not

written to do a specific scientific, educational or data-manipulation

task. This does not mean that, as programming tasks, they are

frivolous. The enjoyment of playing the game on or with the computer

is the application for which the program is written, but the task of

programming a game is often difficult. Games programming is good

practice for finding, deriving and coding algorithms and producing

efficient and user-friendly programs. Graphics manipulation plays a

larger part in games programming than in most applications programs,

and such programs are also more interactive, requiring repeated inputs

and outputs.

BASIC, an interpreted language, is often slow for games purposes.

Fast action graphics games (SPACE INVADERS and their spawn),

are written in machine code for speed of operation, as are tactical

games where exhaustive exploration of possible moves is required (such

as chess). Effective games can be programmed in BASIC, however, if

the amount of calculation is not too great.

An area of interaction between Games and Application

programming is the question of simulation. A program, given data and

rules for manipulating the data, simulates a situation. In a serious

application, this would be a real situation, with the manipulations

performed as known or hypothesised relations from scientific

knowledge. A game simulation would use invented relationships, or

perhaps simplified formulae, if it dealt with a ‘real’ situation. The

techniques would be essentially the same, and are used in a program in

the same fashion. From the point of view of this book, games may be

considered as programming exercises. All the techniques you have

learnt can be put to use in writing games programs.

V5: Example Programs

The first program we will examine is a classic computer simulation, or

rather implementation, of Life. This is not really a game, but a process

that the user sets into operation, and observes. Invented by John

Conway, the game simulates a colony of cells, which grows from the

initial colony according to three simple rules. Cells are placed on a

grid, and in each generation the succeeding generation is determined

by the number of neighbouring grid squares which contain a cell. The

rules are these:

1 If a cell possesses, in the 8 adjacent grid squares, either two or

three neighbour cells, it survives into the next generation.

2 A cell dies (is removed from the grid for the next generation) if it

has (i) 4 or more neighbouring cells (overpopulation) or (ii) 0 or

1 neighbours (isolation).

3 Each grid square which is empty, but has exactly three

neighbours is a birth cell, and a cell will appear in this position in

the next generation.

To implement this on the computer, it is obvious that array

manipulation will be involved since a grid is a 2-D array. It is also

necessary to have more than one such array, since the grid of

Generation (n + 1) is defined from the grid of Generation (n), and none

of the cells of Generation (n) can be altered until the checking process is

complete.

The array of Generation (n) must have each grid position checked,

and the number of neighbours counted. In accordance with the rules,

the future of the cell at that position is determined and, if empty,

whether a cell will be born. This data is stored in one array, and then

the other array is updated to take account of the changes. Spectrum

users should delete lines 220 and 390.

Program Listing

5 REM "LIFE"
10 PRINT TAB 12?"*LIFE#"
20 PRINT
30 DIM AC16G6)
40 DIM BC16il6)
50 DIM A$<6>6)
60 LET GEN=0
70 REM CENTER START COLONY*
80 PRINT “ENTER START COLONY’S

"ON A 6X6 GRID"m n 11 INPUT 6 STRI
NGS OF SPACES AND "i"ASTERISKS <
*)11

90 PRINT
100 FOR F=1 TO 6
110 PRINT "STRING "7 FT
120 INPUT A*CF>
130 PRINT " "7 A$(F)
140 NEXT F
145 REM *PLACE COLONY IN ARRAY*
150 FOR F=1 TO 6
160 FOR Z=1 TO 6
170 IF A$<Fi 2)=,I*H THEN LET B CF

+5,Z+5)=l
180 NEXT 1
190 NEXT F
200 G0SUB 1000
205 REM * INCREMENT GENERATION*
210 LET GEN»GEN+1
220 FAST
230 FOR X=2 TO 15
240 FOR Y=2 TO 15
250 REM *SET COUNTER*
260 LET C=0
265 REM *CHEC!< NEIGHBOUR CELLS*
270 IF ACX-1»Y) = l THEN LET C=C+

1
280 IF A(X-1» Y-1>“1 THEN LET C=

c+i
290 IF A(X~1v Y+l>=1 THEN LET C«

C+l
300 IF A(X? Y+l)-l THEM LET C=C+

1
310 IF A C X» Y~1> = 1 THEM LET C=C+

1

426 427

320 IF ACX+liY-i)=l THEN LET C-
c+i

330 IF A(X+1? Y) = I THEN LET C=C+
1
340 IF A<X+1»Y+1)=1 THEN LET C=

C+l
345 REN *DECIDE IF BIRTH*
350 IF A(X?Y)=0 AND C=3 THEN LE

T B (X 7 Y) = 1
355 REM *DECIDE IF DEATH*
360 IF A(XiY)=l AND <03 OR C<2

) THEN LET B<XiY)=0
370 NEXT Y
380 NEXT X
390 SLOW
400 GOTO 200

1000 CLS
1005 PRINT AT Oil?"GENERATION “?
GEN
1010 FOR X=1 TO 16
1020 FOR Y=1 TO 16
1025 REM ^UPDATE ARRAY A*
1030 LET A(XiY)=B C X t Y >
1035 REM *PRINT ARRAY*
1040 IF A<XiY)*l THEN PRINT AT X
+2iY+65
1050 IF ACXiY> =0 THEN PRINT AT X
+2,Y+6;" "
1060 NEXT Y
1070 NEXT X
1080 COPY
1090 RETURN

Flowchart of “LIFE”

c START

INITIALISE
ARRAYS,

GENERATION

PRINT
INSTRUCTIONS

F= t

F — F + 1
F>6

N

ml
PRINT

STRING
NUMBER

INPUT
STRING F

I

a

INPUT

STRING F

ZT

F=1

F>6

_J

F = F+ 1 r

(!)
428 429

B (X, Y) = 0

(DEATH)

Flowchart of “LIFE” - Subroutine 1000

431

PROGRAM STRUCTURE only. This version uses one side of the screen for a graphic display, and

prints the data on the other. Spectrum users must replace line 40 with

40 PAUSE 0. The program breaks down into the following sections.

(i) Initialisation (lines 30 - 60). Two 2-D arrays, 16 x 16 are set up,

with a 6 string array to hold the start colony. The generation

counter is set as 0.

(ii) Input of start colony (lines 70 - 140). 6 strings of 6 characters are

entered and printed out.

(iii) Start colony is placed in array. The lines 150- 190 place 1

(representing a cell) in array B when an asterisk is present in the

string array entered in (ii), in the central 6x6 block.

(iv) Print Subroutine. Line 200 sends control to the subroutine. This

uses a double loop to set array A as array B, then prints asterisks

on the grid for each 1 found in array A. Note that at the end of

this subroutine arrays A and B hold the same data. The screen is

copied, and control returned to line 210.

(v) Checking of population to determine next generation. The

generation is incremented and the computer put into FAST

mode. The double loop is set up, and each cell in array A is

checked in turn for the number of neighbours it possesses. The

counter C is incremented by 1 for each neighbour. Line 350

places a ‘born’ cell into array B if the cell in array A is blank,

and the number of neighbours is three. Line 360 kills any cell

with more than 3 or less than two neighbours. The

corresponding array B element is set to 0. At this point array B

holds the revised population for the next generation. Array A

must be left alone during the check procedure. This is the reason

why the two arrays are made equivalent in (iv) above.

(vi) Control is returned to line 200, and steps (iv) and (v) repeated.

The pattern of asterisks input initially determines how the population

develops. Some patterns die out, after a number of generations, some

enter a stable sequence that repeats, and there is a general tendency

towards symmetry if a population survives long enough.

The next game is also an implementation of a favourite game for

computers, which has existed since the days of printout-only terminals

(which is where the instruction PRINT in BASIC comes from, as a

hangover from hard-copy terminals transferred to implementation on a

screen). The basic idea, upon which many variations have been

created, is that a landing must be made on the lunar surface at a speed

low enough to prevent a crash. Rockets can be fired to slow the craft,

but the fuel supply is finite. If the fuel supply is exhausted, a crash is

inevitable. The game was originally played with a printout of the data

5 REM “LANDER"
10 PRINT TAB 10? "*LANDER*"? AT

4,0?"LUNAR LANDING GAME. YOU ARE
","INITIALLY 500 METRES ABOVE T

HE", "SURFACE OF THE MOON. YOU HAV
E ", "100 FUEL UNITS. "

20 PRINT "PRESS R TO FIRE ROCK
ETS TO SLOW DESCENT. EVERY FIRING

USES 5 FUEL UNITS. YOU MUST LAND
SLOWER THAN 8 TO SURVIVE. GOOD L.

LICK. "
30 PRINT ,,"PRESS A KEY TO STA

RT"

40 PAUSE 40000
45 REM **INITIALISE**
50 CLS
60 PRINT AT 20, 15? —

esILj "

70 LET F«100
SO LET H=500
90 LET S=15
95 REM **START OF LOOP**

100 LET V=0
110 IF H<600 THEN PRINT AT 20-H

/30»20?" "
120 PRINT AT 1,0?"FUEL: "?F?" "

? TAB 0?"HEIGHT:"?H?" "? TAB 0?"
SPEED:"?S?" "

135 REM **CHECK ROCKETS **
140 IF INKEY* ="R" AND F >= 5 T

HEN LET V=5
150 IF V THEN PRINT AT 21--H/30,

20?"V V"
160 IF F<5 THEN PRINT AT 1,7?"*

EMPTY*"

170 LET F=F-V
ISO LET S=S+2-V
190 PRINT AT 20-H/30,20?" "?

TAB 20?"
195 REM *# CHECK IF LANDED **
200 IF H<30 THEN GOTO 230
210 LET H=H-S
220 GOTO 100

225 REM ** LANDING RESULT **
230 IF S<4 THEN PRINT AT 21,10?

"PERFECT LANDING"
240 IF S<8 AND S>4 THEN PRINT A

T 21,10?"BUMPY BUT SAFE"
250 IF S >= S THEN PRINT AT 21,

10?"CRASHED AND SMASHED"
260 PRINT AT 12,0?"ANOTHER GAME

?(INPUT Y OR N>"
270 INPUT A*

432 433

280 IF A$="Y" THEN GOTO 50
290 REM *END*

Lines 10 to 30 print instructions, and line 40 stops the program until a

key is pressed. Lines 50 to 90 clear the screen, print the ‘lunar surface'

and set the variables: F is fuel units, H is height above surface, S is

speed of descent.
The main program is in the loop between lines 100 and 220. V is set

to zero as a flag, and the craft is printed by line 110 if the scale set

allows it to be on screen. The craft disappears off the top of the screen if

the height is greater than 600 since the PRINT AT instruction scales so

that 1 print line = 30 metres of height. Line 120 prints the current data.

Note the spaces after the variables to overprint if the values decrease,

or in the case of the speed becoming positive after being negative.

(Negative descent speed means ascent.)

Line 140 checks if the R (for rockets) key is being pressed. If it is, V

is set to 5. Line 150 prints rocket exhausts below the craft if the R key

was pressed (evaluated by V - 0 = False if not pressed, V = 5 = True if

pressed). The fuel is checked (line 160) and reduced by the value of V if

not empty. The speed is adjusted by increasing it, then reducing it by

the value of V if the rockets have been fired. Line 190 overprints the

craft and rockets, and 200 checks if the surface is near enough for

landing to be assumed. If it is, control is transferred to the landing

message section. If not, the height is adjusted and the program loops

back to repeat the process.

Notice that the variable V is used in three ways within the loop, and

that the loop structure, using INKEY$ to see if the player has input

instructions, is common in interactive games. It provides a simulation

of a real-time process. In this game, the speed is assumed to be metres

per second (hence the simple LET H = H - S of line 210). It is actually

nominal ‘metres’ per program loop! Other games can wait for inputs,

but the use of a loop allows the inexorable attraction of gravity to go on

its way unless the player does something. Spectrum users, with their

faster computing, may wish to insert a PAUSE instruction in the loop.

Programming for this type of game can show the programmer that

certain structures of programs are inefficient in program execution,

since conditional branches to routines requiring calculation will

noticeably slow the loop. In the interests of a good game, structured

programming practice may be set aside and speed of execution can

become a goal in itself. However, remember not to transfer these

techniques to serious programs!
Games programming can become extremely complex when we

consider the strategy and tactics which must be built into the response

from the computer. We have dealt with only the simplest form of game,

and have not included any of this type of game. We suggest that you

put to work the techniques we have shown you in this text to analyse

some of the tactical games in the popular computing magazines, if this

area interests you. In order to start learning to appreciate the problems

involved, you could start by writing a program to play Noughts and

Crosses. You may think this is a very simple game, but it is a

surprisingly difficult one to program!

434
435

PART FIVE

SECTION W: THE SPECTRUM

Wl: The Spectrum System and Keyboard

This Unit introduces the Spectrum microcomputer system. As a

Spectrum user you have been referred to this Unit because, whilst the

BASIC language that both the Spectrum and ZX81 use (Sinclair single

keystroke BASIC) has only minor differences between the two

machines (although the Spectrum has additional features that the

ZX81 does not possess, such as colour, high-resolution graphics and

sound), there are greater differences in the arrangements of the

keyboard. The Spectrum system is also simpler to set up and connect.

After reading this Unit, you should return to the start of Section C

(page 19) to start using the BASIC language, once the keyboard and

the way to access all the confusing array of characters grouped on and

around each key have been explained. Sections A and B are for the

ZX81 only, but you will find in this Unit the same information as it

applies to the Spectrum. The main text takes you through the Sinclair

BASIC language, using the same instructions for the ZX81 and

Spectrum, any minor differences being noted. This involves the

introduction of a few of the Spectrum’s enhanced BASIC instructions,

but most of the additional facilities of the Spectrum are covered in the

next Units, to be read after you have worked through the main text and

have learnt the BASIC programming techniques.

SPECTRUM SYSTEM DESCRIPTION

We assume that you have in front of you the components of your

Spectrum system.

This consists of:

1 The ZX Spectrum microcomputer.

2 Either 16k of internal RAM or 48k (although nothing in this

book demands more memory than 16k).

3 The ZX power supply, with the correct plug attached for the a.c.

power sockets you have.

4 The ZX printer and its socket.

5 A domestic TV to act as a display monitor.

6 A mono cassette recorder, with an a.c. supply lead (if not battery

powered).
7 The aerial/antenna cable which connects the Spectrum to your

TV set. (In the U.S. this is via a switch box.)

8 A pair of cassette recorder leads, fitted with 3.5mm jack-plugs at

either end.

These components make up a complete system, the least crucial part of

which is the ZX printer. If you do not have a printer then you can

ignore the printer-related sections of this book and learn BASIC

439

programming techniques just as well. It is extremely useful, however,

to have a printer both for hard-copy printouts of results and, more

importantly, for program listings for documentation purposes.

The cassette recorder should preferably be mono, since stereo tape

deck recording heads can cause problems, even used on only one

channel. The cheaper recorders work somewhat better (due to the less

sophisticated audio circuits being better for handling the crude form of

the computer’s signals) than more expensive ones, but get one with a

tape counter, as finding programs without one can be an irritatingly

time-consuming process.

FIGURE 3

SPECTRUM SYSTEM DIAGRAM

FUNCTION OF COMPONENTS

Here is a brief rundown of the function of each of the components of

the Spectrum microcomputer system.

Device Function

Spectrum computer board Data processing and control of inform¬

ation handling.

Input from keyboard or cassette. Output

to TV screen and printer. Also holds the

16k or 48k of RAM memory, K stands

for kilobyte. One byte is eight bits, which

are the bin ary digifo (0 and 1, represented

by on-off switches in the computer)

computers work with. A kilobyte is

roughly 1000 bytes, hence the name. (It

is actually 210, 1024).

Keyboard Input of information. Programs, data

and commands are keyed in.

On-line control.

TV Set Used as V.D.U. (visual display unit)

monitor. Provides on-line output of

information - visual display of programs,

results (data, graphs, pictures) and

control commands.

Cassette recorder Off-line storage of information Program

data are stored (written) as coded

electromagnetic impulses on cassette

tapes. They can be played back (loaded)

at any time for use again. The computer

reads the data from the tape. The

Spectrum will also be able to use the

microdrive, storing the coded impulses

on a magnetic-coated disc, when it

becomes available.

Printer Output device, to provide a permanent

printed record of the screen display,

program listings or information in the

computer memory. Prints on electro¬

sensitive paper.

Power Supply Supplies the d.c. current (9 volts at 1,2

amps) to run the computer, RAM pack

and printer, from the household power

supply.

Cables To interconnect the devices which make

up the system.

The printed circuit board inside the Spectrum holds and connects the

440 441

IC (integrated circuit) microchips which provide the computing

facilities. These are:

1 Z80A CPU (Central Processing Unit) microprocessor chip

which is the heart of the system. It is used in many other

microcomputers, and performs the arithmetic manipulations.

2 ROM (Read Only Memory) chip holds the 16k BASIC

interpreter which translates BASIC instructions into the

machine-code instructions that the Z80A operates with. The

data in this chip is fixed, hence the name, and also stable - it

remains when the power is switched off.

3 RAM (Random Access Memory) chips provide the memory

store. This is either 16k or 48k, depending on which version of

the Spectrum is owned. This memory is volatile - the data is

stored as electrical impulses and is lost when the power is

switched off. This memory stores the BASIC program, the

values of variables (including some system variables that the

computer uses for to organise its own affairs), a memory picture

of the TV screen display, and the stacks which hold the numbers

whilst they are being manipulated. The memory organisation is

described in Section U.

4 The Logic Chip co-ordinates the operation of the other chips.

Also mounted on the board are the stabiliser for the 5 volt supply the

computer takes from the power-supply socket, the colour TV signal

encoder and modulator circuits and the sockets for the connecting

cables to the TV and cassette recorder. There is also a small speaker for

the sound output.

CONNECTING UP

1 Set aside an area to work in and set up your television,

Spectrum, cassette -recorder, printer (if you have one) and the

Spectrum’s power supply, as shown in the diagram of the system

(Fig. 3).

2 Always remember to connect the printer to the back of the

Spectrum before you switch the power on for the ZX power

supply. With the printer connected, the TV aerial lead

connected to the TV socket on the Spectrum, and the 4EAR’

and ‘MIC’ leads correctly set up as below, you can then plug into

and switch on the a.c. power (household) supply.

Connect the printer into the socket at the rear of the

Spectrum. Make sure the gap in the board at the rear of the

Spectrum connects with the plastic piece in the printer socket,

then push firmly home.

Connect one end of the twin cassette leads into the EAR and

MIC sockets of the cassette recorder. Push firmly home and

twist slightly to get good connections. Take the same colour plug

as is in the EAR socket of the cassette recorder and place it in the

Spectrum EAR socket. Place the other in the MIC socket.

Inset the jack-plug leading from the power supply into the

socket marked 9 V d.c. on the back of the Spectrum. Connect

the TV aerial/antenna lead to the aerial socket of the TV.

Your system is now set up. Check the TV is turned off, and no

cassette keys are depressed. Plug the ZX power supply and

cassette leads into the a.c. (household) power supply sockets,

and switch them on if they have switches.

3 Switch on the TV. Choose a channel with the push button or

other channel select control, and tune the TV until the display:

© 1982 Sinclair Research Ltd

appears on the screen. Adjust the tuning until the display is

clear, and the brightness, contrast and colour (if you’re using a

colour TV!) controls to get a good picture without it being too

bright (since you are going to spend some time looking at it from

close up).

Note for U.S. users: In the U.S., the antenna lead connects

with standard terminals to the TV. An antenna on/off switch is

provided between the computer and the TV. The computer has

a channel select switch to select channel 2 or 3. Whichever

channel is not transmitting should be selected, and the TV

tuned until the computer display is obtained.

4 Press a few keys to get some characters printed on the

screen - these should appear at the bottom of the screen. Then

press the CAPS SHIFT and 1 (EDIT) keys together, to clear the

screen.

5 Press the Z key. The screen will print COPY at the bottom.

Then press ENTER. The printer will start operating, feeding

paper through. There will be nothing printed on it because there

is nothing printed on the screen. Check that the printer paper

does not rub against the side of the printer as it is fed through. If

it rubs, pull it gently away from the side as the paper is fed

through.

You now have an operating microcomputer system. The system needs

no maintenance other than the occasional cleaning of the printer and

the tape heads on the cassette player. Clean the printer with a small

brush to clear away the black dust that accumulates. Be careful not to

damage the electrode (a small piece of wire running in the slot visible

when the paper carrier is removed). Blow away the dust when you’ve

brushed it from this slot. Keep your cassette tape heads clean and de¬

magnetised.

If the printer doesn’t work, first turn off the power. Then remove

and re-insert the printer socket. Switch the power on again and try

once more. The contacts on the printed circuit boards that the printer

442 443

socket connects with may need cleaning if the printer doesn’t work or

prints incorrectly. Clean the contacts with a proprietary contact cleaner

or a pencil eraser. DO NOT use abrasives to clean these contacts.

These are the only problems you should encounter with your system,

as long as all plugs are well seated in their sockets. With the need to

remove and re-insert the EAR socket when saving programs on

cassette tape, you must take care to always re-insert the jack-plug

properly each time.

THE KEYBOARD

The Spectrum keyboard has 40 keys arranged in 4 rows of 10. At first

sight, it might appear similar to a typewriter keyboard, but on closer

inspection you will see that keys have 5 or 6 functions or characters. In

fact:

Eight different characters and functions

can be obtained with some keys!

The keyboard contains:

1 The digits 0 to 9

2 The letters of the alphabet printed in upper and lower case

(capitals)

3 The complete BASIC language:

- instructions

- commands

- arithmetic, conditional and logical operators

- arithmetic functions

4 Grammatical signs and symbols

5 Special control keys

6 Graphics symbols

These are all called characters, and are on, below or above the keys

used to access them.

Notice that words like PRINT, LIST, RUN, etc are all printed on

the keyboard and also appear on the screen with a single key press.

The Spectrum’s ability to print complete words in the BASIC

language at the press of a single key is called:

SINGLE KEYSTROKE BASIC

On most other computers you have to key in each letter of, for

example, the instruction PRINT. This is obviously inefficient. The

Spectrum is very powerful in this respect. The keyboard contains all

the characters in the Spectrum’s character set, together with a few

special keys. Some 200 or so different characters are available. Some

print to the screen, others are non-printing (e.g. DELETE).

444

Figure 4

SPECTRUM KEYBOARD DIAGRAM

445

THE CHARACTER TYPES ON THE SPECTRUM KEYS

The Spectrum keyboard, to handle the enhanced version of Sinclair

BASIC that runs on the Spectrum, has to accommodate more

functions. This has been done by using basically the same layout as the

ZX81 keyboard, but incorporating an additional shift key, which

provides the capacity to access the additional colour, graphics, sound

and microdrive functions which are present on the Spectrum but not on

the ZX81. The Spectrum has an enhanced character set also, with

additional text characters (@, ©, [, etc.) not in the ZX81

character set.

As this book deals with the ZX81 computer as well as the Spectrum,

the treatment of additional facilities of the Spectrum is kept to this

separate Spectrum Section, although some comments are made in the

general text about these facilities where appropriate. However, you

must learn how to access all the characters oil the keyboard as a first

priority.

The keyboard is very complex and it will take some time for you to

find your way around it with ease. It is best described in terms of how

the characters are accessed and the cursors that indicate which mode

the computer is in. The mode determines how the pressing of a key (a

keystroke) is interpreted. Each key has multiple meanings for the

computer, depending on the mode and whether either of the SHIFT

keys (CAPS SHIFT and SYMBOL SHIFT) is being pressed at the

same time as the keystroke occurs.

You will notice that more characters are available from the top row

of keys. These incorporate the colour control and graphics characters.

(The inverse graphics are not shown on the key.) Here are examples of

the two types of key:

CAPS SHIFT
CHARACTER
(white)

K and MODES
UNSHIFTED DIGIT
CHARACTER

E Mode CAPS SHIFT
BLUE
EDIT

COLOUR CONTROL CHARACTER
(in appropriate colour)

G Mode. Unshifted
Graphics Character
G Mode Shift gives
Inverse Character (gy in this case)

K and L Modes SYMBOL
SHIFT CHARACTER (red)

T
E Mode SYMBOL SHIFT
CHARACTER (Red)

ROW 1 KEYS Example is the 1 key

446

E Mode UNSHIFTED CHARACTER (green)

K and L Modes SYMBOL
SHIFT CHARACTER

K Mode UNSHIFTED CHARACTER
(White)

OTHER KEYS Example is Q key

There are also the keys for ENTER, CAPS SHIFT, SYMBOL

SHIFT, and the SPACE key (with BREAK printed above SPACE).

See the keyboard diagram. We must now describe the modes the

computer can be in, and the cursors that indicate the mode. There are

also two other cursors which we will deal with here.

MODES

When inputting (keying in) program lines the position for the next

entry is indicated by a cursor on the screen. The mode is indicated by

the flashing cursors [k| [l] fo| [c] [TT| .

The {K\ mode (Keywords) and \h\ (Letters) may be used unshifted,

with CAPS SHIFT or with SYMBOLS SHIFT. Letters of the

alphabet are lower case unless the CAPS SHIFT key is used or the [c]
mode used. The _C_ mode (Capitals) is obtained by pressing CAPS

SHIFT and CAPS LOCK simultaneously and is identical to the L

mode apart from producing capitals (upper case) instead of lower-case

letters. To return to [I] mode press CAPS SHIFT and CAPS LOCK

simultaneously. All letter inputs (REM statements, string inputs and

assignments) in this text are in Capitals. You must use C-mode

exclusively to get listings and printout of letters that correspond to
those in this text.

The [G | mode (Graphics) accesses the graphics characters and may

be obtained using the GRAPHICS key as an on-off switch. Press

CAPS SHIFT and GRAPHICS simultaneously to enter jj] mode.

Repeat to cancel.

447

The | E I mode (Extended) provides the equivalent of the function

mode of the ZX81. It is obtained by pressing CAPS SHIFT and

SYMBOLS SHIFT simultaneously and lasts for one character only.

It may be used unshifted, with CAPS SHIFT or with SYMBOLS

SHIFT.

EFFECTS OF SHIFT KEYS ON MODES

K mode

Unshifted

CAPS SHIFT

SYMBOLS SHIFT -

L mode

Unshifted

CAPS SHIFT

SYMBOLS SHIFT

expecting a command i.e. Keyword mode.

keyword (white word on 3 bottom rows of

keys)

digit (white digit on top row of keys)

keyword (white word on 3 bottom rows of

keys)

keyword (white word above top row of

keys)

keyword or symbol (red symbol or word

on key)

expecting a letter or a number i.e. Letters

mode, giving the lower case letters.

letter (white letter on 3 bottom rows of

keys)

digit (white digit on top row of keys)

letter (capitals) (white letter on 3 bottom

rows of keys)

keyword (white word above top row of

keys)

keyword or symbol (red symbol or word

on key)

C mode identical with L mode but Capital letters

are obtained with Unshifted letter keys.

G mode

Unshifted

CAPS SHIFT

SYMBOL SHIFT

for accessing Graphics symbols.

graphics character (in grey/white on keys

1 to 8)

user defined graphic on keys A through

U. (Not shown on keyboard.)

inverse graphics character (reverse of

symbol on top row of keys)

same as CAPS SHIFT

User defined graphics are dealt with in Unit W2. They are initially

set as the capital letters A to U, which is what appears on the screen.

448

Note that DELETE works in G mode without CAPS SHIFT being

pressed.

E mode - Extended mode, accessing the function

characters in green above the keys in

bottom 3 rows, colour control characters

on the top row,and the function or

symbol characters in red below all keys.

E mode lasts for one character only.

Unshifted - function or symbol (in green above key

for 3 bottom rows)

- colour control (in colour above top row)

CAPS SHIFT - function or symbol (in red below key for 3

bottom rows)

- colour control (in colour above key for top

row)

SYMBOLS SHIFT - function or symbol (in red below key for 3

bottom rows)

- function (in red below key for top row).

The colour cqntrol characters print in a program line as the digit of the

key that accesses them, i.e. they are coded 1-7 and 0. If they are

accessed in E mode without INK or PAPER before them, the effect is

to put colour control characters into the display. When unshifted, the

colour control characters change the background (PAPER) colour of

what is placed on the screen thereafter, and when CAPS SHIFT is

pressed, the colour of the character (INK) is changed.

Note: the main body of this text assumes no colours are used, since

the ZX81 cannot produce colour. Colour on the Spectrum is dealt with

in Unit W3. Experiment with colour all you want, but this text is

primarily about BASIC programming, and it doesn’t matter what

colour is on the screen for this!

Exercise

Access all the modes, i.e. get each different cursor on the screen. Key

in all the characters in each mode, first unshifted, then with CAPS

SHIFT, and finally with SYMBOL SHIFT. You will have to enter the

E mode again after each character. Watch what happens with TRUE

VIDEO and INV VIDEO. Notice they reverse each other. Notice you

can’t see a SPACE. Don’t press ENTER, just play around on the

bottom lines of the screen. Notice that the line moves up the screen

when it is filled. Press EDIT with CAPS SHIFT to clear the screen.

You can’t harm the computer whatever you enter. Note that two words

are abbreviated on the keyboard, but print in full - RAND and

CONT.

449

SYNTAX ERROR CURSOR f?

This cursor appears flashing in a line input at the bottom of the screen

if the computer detects an error in the syntax of the line (i,e. finds an

error in the ‘grammar’ of the BASIC language instruction input). It

appears when ENTER is pressed to enter the line of program or the

command into memory. The cursor appears before the last error in the

line. There may be more than one error, but only one will be indicated

at a time. Editing (making any change in the line) causes the cursor to

disappear. It will reappear if necessary (error not corrected) when

ENTER is pressed once again.

CURRENT LINE CURSOR >

This cursor appears after the line number of the last line entered into a

BASIC program (the current line). If EDIT is pressed (CAPS

SHIFTed 1) this line is brought down to the bottom of the screen. It

can then be edited.

In a program listing of the lines of a program displayed on the

screen, the cursor may be moved to point to different lines by using the

(CAPS SHIFTed 6) and (CAPS SHIFTed 7) keys to move it down or

up a program line. This is used to select a line for editing.

An important point to note with regard to the keyboard is that the

Spectrum has a repeat key action on all keys. If any key is held down,

after a short time it will automatically repeat.

We now give a table of the characters accessible on the Spectrum

keyboard. Ignore the CODE information for now. This will be dealt

with later. This table is the Spectrum equivalent of Appendix III,

which deals with the ZX81.

CHARACTER SET AND CODES TABLE

This table, which is in alphabetical order, will enable the Spectrum

user to quickly reference any character for:

its position on the keyboard in terms of a row and column

‘parent key’ address (e.g. A is in the third row and first column

of keys (3,1))

the mode in which the function may be used (indicated by the

flashing cursor on the screen)

which keys to press to obtain the function (here SHIFT means

that either the CAPS SHIFT or the SYMBOL SHIFT key will

give the character)

the CODE of the character.

Character Position Mode(s) To Obtain Code
on Keyboard
Kow, Column

Press

A 3,1 L CAPS SHIFT A 65
C A

a 3,1 L A 97
ABS 3,5 E G 189
ACS 2,2 E SHIFT W 182
AND 2,6 K L C SYMBOL SHIFT Y 198
ASN 2,1 E SHIFT G 181
AT 2,8 K L C SYMBOL SHIFT I 172
ATN 2,3 E SHIFT E 183
ATTR 3,9 E SHIFT L 171

B 4,6 L SHIFT B 66
C B

b 4,6 L B 98
BEEP 4,2 E SHIFT Z 215
BIN 4,6 E B 196
BORDER 4,6 K B 213
BREAK 4,10 CAPS SHIFT SPACE -

BRIGHT 4,6 E SHIFT B 220

C 4,4 L SHIFT C 67
C C

c 4,4 L C 99
CAPS LOCK 1,2 L CAPS SHIFT Z -

CAPS SHIFT 4,1 all CAPS SHIFT
CAT 1,9 E SYMBOL SHIFT 9 207
CHR$ 2,7 E U 194
CIRCLE 3,6 E SHIFT H 216
CLEAR 4,3 K X 253
CLS 4,5 K V 251
CODE 2,8 E I 175
CONTinue 4,4 K C 232
COPY 4,2 K z 255
COS 2,2 E w 179

D 3,3 L CAPS SHIFT D 68
C D

d 3,3 L D 100
DEF FN 1,1 E SYMBOL SHIFT 1 206
DELETE 1,10 K L C G CAPS SHIFT 0 12

C G 0
DIM 3,3 K D 233
DRAW 2,2 K W 252

E 2,3 L CAPS SHIFT E 69
C E

e 2,3 L E 101
EDIT 1,1 K L C CAPS SHIFT 1 7
ENTER 3,10 ENTER 13
ERASE 1,7 E SYMBOL SHIFT 7 210
EXP 4,3 E X 185

450 451

Character Position Mode(s) To Obtain Code Character Position Mode(s) To Obtain Code
on Keyboard Press on Keyboard Press
Row, Column Row, Column

F 3,4 L CAPS SHIFT F 70 MERGE 2,5 E SHIFT T 213
C F MOVE 1,6 E SYMBOL SHIFT 6 209

f 3,4 L F 102
FLASH 4,5 E SHIFT V 219 N 4,7 L CAPS SHIFT N 78
FN 1,2 E SYMBOL SHIFT 2 168 C N
FOR 3,4 K F 235 n 4,7 L N 110
FORMAT 1,10 E SYMBOL SHIFT 0 208 NEW 3,1 K A 230

NEXT 4,7 K N 243
G 3,5 L GAPS SHIFT G 71 NOT 3,2 K LC SYMBOL SHIFT S 195

C G

g 3,5 L G 103 O 2,9 L CAPS SHIFT O 79
GOSUB 3,6 K H 237 C o
GOTO 3,5 K G 236 0 2,9 L o 111
GRAPHICS 1,10 K L C CAPS SHIFT 0 _ OPEN 1,4 E SYMBOL SHIFT 4 211

OR 2,7 K L C SYMBOL SHIFT U 197
H 3,6 L CAPS SHIFT H 72 OUT 2,9 E SHIFT O 223

G H OVER 4,7 E SHIFT N 222
h 3,6 L H 104

P 2,10 L CAPS SHIFT P 80
I 2,8 L CAPS SHIFT I 73 C P

C I P 2,10 L P 112
i 2,8 L I 105 PAPER 4,4 E SHIFT C 218
IF 2,7 K U 250 PAUSE 4,8 K M 242
IN 2,8 E SHIFT I 191 PEEK 2,9 E O 190
INK 4,3 E SHIFT X 217 PI 4,8 E M 167
INKEY$ 4,7 E N 166 PLOT 2,1 K Q 246
INPUT 2,8 K I 238 POINT 1,8 E SYMBOL SHIFT 8 169
INT 2,4 E R 186 POKE 2,9 K o 244
INVERSE 4,8 E SHIFT M 221 PRINT 2,10 K p 245

J 3,7 L GAPS SHIFT J 74 Q 2,1 L CAPS SHIFT Q, 81

C J C Q.
j 3,7 L J 106 q 2,1 L Q 113

K 3,8 L CAPS SHIFT K 75 R 2,4 L CAPS SHIFT R 82
C K C R

k 3,8 L K 107 r 2,4 L R 114
RANDomise 2,5 K T 249

L 3,9 L CAPS SHIFT L 76 READ 3,1 E A 227
C L REM 2,3 K E 234

1 3,9 L L 108 RESTORE 3,2 E S 229
LEN 3,8 E K 177 RETURN 2,6 K Y 254
LET 3,9 K L 241 RND 2,5 E T 165
LINE 3,9 K L 202 RUN 2,4 K R 247
LIST 1,3 K K 240
LLIST 4,5 E V 225 S 3,2 L CAPS SHIFT S 83

LN 4,2 E z 184 C S
LOAD 3,7 K J 239 s 3,2 L s 115

LPRINT 4,4 E G 224 SAVE 3,2 K s 248
SCREENS 3,8 E SHIFT K 170

M 4,8 L CAPS SHIFT M 77 SGN 3,4 E F 188
C M SIN 2,1 E Q, 178

m 4,8 L M 109 SPACE 4,10 SPACE 32

452 453

Character Position Mode(s) To Obtain Code Character Position Mode(s) To Obtain Code
on Keyboard Press on Keyboard Press
Row, Column Row, Column

SQR 3,6 E H 187 ! 1,1 KLC SYMBOL SHIFT 1 33
STEP 3,3 KLC SYMBOL SHIFT D 205 < i 2,10 KLC SYMBOL SHIFT P 34
STOP 3,1 K L C SYMBOL SHIFT A 226 # 1,3 KLC SYMBOL SHIFT 3 35
STR$ 2,6 E Y 193 $ 1,4 KLC SYMBOL SHIFT 4 36
SYMBOL SHIFT 4,9 SYMBOL SHIFT % 1,5 KLC SYMBOL SHIFT 5 37

& 1,6 KLC SYMBOL SHIFT 6 38
T 2,5 L CAPS SHIFT T 84 ‘ 1,7 KLC SYMBOL SHIFT 7 39

C T (1,8 KLC SYMBOL SHIFT 8 40
t 2,5 L T 116) 1,9 KLC SYMBOL SHIFT 9 41
TAB 2,10 E P 173 ❖ 4,6 KLC SYMBOL SHIFT B 42
TAN 2,3 E E 180 + 3,8 KLC SYMBOL SHIFT K 43
THEN 3,5 KLC SYMBOL SHIFT G 203 f 3,6 KLC SYMBOL SHIFT H 44
TO 3,4 KLC SYMBOL SHIFT F 204 - 3,7 KLC SYMBOL SHIFT J 45

4,8 KLC SYMBOL SHIFT M 46
U 2,7 L CAPS SHIFT U 85 / 4,5 KLC SYMBOL SHIFT V 47

C U 4,5 KLC SYMBOL SHIFT Z 58
u 2,7 L U 117 » 2,9 KLC SYMBOL SHIFT O 59
USR 3,9 E L 192 < 2,4 KLC SYMBOL SHIFT R 60

= 3,9 KLC SYMBOL SHIFT L 61
V 4,5 L CAPS SHIFT V 86 > 2,5 KLC SYMBOL SHIFT T 62

C V ? 4,4 KLC SYMBOL SHIFT C 63
V 4,5 L V 118 @ 4,2 KLC SYMBOL SHIFT Z 64
VAL 3,7 E J 176 (2,6 E SHIFT Y 91
VAL$ 3,7 E SHIFT J 174) 2,7 E SHIFT U 93
VERIFY 2,4 E SHIFT R 214 \ 3,3 E SHIFT D 92

t 3,6 KLC SYMBOL SHIFT H 94
W 2,2 L CAPS SHIFT W 87 1,10 KLC SYMBOL SHIFT 0 95

C W £< 4,3 KLC SYMBOL SHIFT X 96
w 2,2 L w 119 [3,4 E SHIFT F 123

3,5 E SHIFT G 125
X 4,3 L CAPS SHIFT X 58 if 2,3 E SHIFT S 124

C X 3,1 E SHIFT A 126
X 4,3 L X 120 © 2,10 E SHIFT P 127

<= 2,1 KLC SYMBOL SHIFT G 199
Y 2,6 L CAPS SHIFT Y 59 >= 2,3 KLC SYMBOL SHIFT E 200

C Y <> 2,2 KLC SYMBOL SHIFT W 201
y 2,6 L Y 121 <*- 1,5 KLC CAPS SHIFT 5 8

1,8 KLC CAPS SHIFT 8 9
z 4,2 L CAPS SHIFT Z 90 4 1,6 KLC CAPS SHIFT 6 10

C z 4 1,7 KLC CAPS SHIFT 7 11
z 4,2 L z 122 □ (space) 1,8 G 8 128

■ 1,8 G SHIFT 8 143
0 1,10 KLC 0 48 □ 1,1 G 1 129
1 1,1 KLC 1 49 G 1,1 G SHIFT 1 142
2 1,2 KLC 2 50 E 1,2 G 2 130
3 1,3 KLC 3 51 a 1,2 G SHIFT 2 141
4 1,4 KLC 4 52 B 1,3 G 3 131
5 1,5 KLC 5 53 H 1,3 G SHIFT 3 140
6 1,6 KLC 6 54 a 1,4 G 4 132
7 1,7 KLC 7 55 m 1,4 G SHIFT 4 139
8 1,8 KLC 8 56 u 1,5 G 5 133
9 1,9 KLC 9 57 n 1,5 G SHIFT 5 138

N 1,6 G 6 134

454 455

Character Position
on Keyboard
Row, Column

Mode(s) To Obtain
Press

Code

B 1,6 G SHIFT 6 137
a 1,7 G 7 135
E 1,7 G SHIFT 7 136

Colour control characters have no special codes. They have the codes

of, and print as, the digit of the key that accesses them.

They are on keys 1 to 7 and 0.

TRUE VIDEO is on key 1,3. This gives INK on PAPER

colours (black on white on switch-on).

INV. VIDEO is on key 1,4. This gives INVERSE, i.e.

PAPER colour on INK colour

background (white on black if not

coloured).

These use CODE 20 (a control code), and

swap the current INK and PAPER

colours.

Other control codes are as follows:

Control Character Code

Comma for print spacing 6

Number (in memory) 14

Ink control 16

Paper control 17

Flash control 18

Bright control 19

Inverse control 20
Over control 21
Print At control 22
Print Tab control 23

These control characters are used to store required information in the

attribute file (colour commands and characteristics of screen display),

and the display file. They are followed by the values they take.

User-defined graphics have codes 144 to 164 inclusive, and are set,

unless redefined, as the capital letters A to Udn sequence. See Unit W3

for more information on this.

W2: Additional Spectrum BASIC Functions

This Unit covers the additional instructions and functions that are

available in the Spectrum superset of Sinclair BASIC. First we will

indicate the major differences.

SUMMARY OF ADDITIONAL SPECTRUM FACILITIES

The following are the significant differences between the ZX81 and the

Spectrum which have not been dealt with in the main body of the text:

(i) The Spectrum gives a colour signal to the TV - see COLOUR

in Section W3. Of course, it is still possible to use the machine

on a black and white TV, where different shades of grey will be

obtained when the colour commands are used.

(ii) The Spectrum’s character set differs from that of the ZX81 and

includes lower case as well as capital letters - see

CHARACTER SET and USER DEFINED GRAPHICS.

(iii) The Spectrum’s keyboard has additional characters and

functions. You should now be familiar with the functions

treated in the main text. Extended functions are dealt with a

little later in this Unit.

(iv) Simple sound production is available using the Spectrum’s

BEEP command - see SOUND in Section W3.

(v) The tape storing facilities represent a considerable

improvement on those offered by the ZX81 - see TAPE

STORAGE below. The tape LOAD and SAVE speed is

roughly 16k words in 100 seconds, and there is a facility to

merge a program stored on tape with one in memory using

MERGE. The VERIFY facility can be used to check that a

program has saved correctly, as has been noted.

(vi) Disc storage and file-handling capability with the microdrive

will eventually be available on the Spectrum, loading 16k

words per second - see OTHER KEYS below.

(vii) Additional graphics commands are available to enable straight

lines, arcs and circles to be drawn simply - see GRAPHICS in

Section W3.

(viii) The INPUT statement has additional features and

instructions. READ, DATA and RESTORE are added - see

below: PUTTING DATA INTO PROGRAMS.

(ix) On the Spectrum it is possible to define your own numeric and

string functions in a program - see USER DEFINED

FUNCTIONS below.

(x) The Spectrum operates in a ‘fast mode’ at all times and is

roughly four times faster than the ZX81.

(xi) Multiple statements on a line are possible on the Spectrum

with a colon(:) as a statement separator. For example:

10 LET X = 4: LETY-6: LET Z - 8

Whilst this is a useful addition, multiple line statements can

also be very confusing and their use should be minimised. This

said, they can be useful for additional REM statements,

assignments of related variables and conditional program

sequences, and for the combination of graphics and colour

commands.

456 457

The facility of being able to place a sequence of instructions

after a conditional test is valuable. The sequence of BASIC

instructions following an IF...THEN will be executed IF the

condition is TRUE. Control passes directly to the next line of

the program if the condition is false. We can write:

10 INPUT a

20 IF a<l OR a>9 THEN PRINT “Out of Range”:

GOTO 10

30 PRINT a

It is important to remember that you can only GOTO a line

number and start at the beginning of that line. You cannot

access the second or subsequent statements of a line with

multiple statements.

(xii) There is no SCROLL key on the Spectrum, but scrolling is

done automatically by pressing any key (except N, STOP,

BREAK) when 4Scroll?* appears on the screen. Making the

Spectrum SCROLL in the same way as the ZX81 SCROLL

command has been covered in the text.

(xiii) It is important to note that CLEAR operates differently on the

Spectrum than on the ZX81. CLEAR not only erases all

variables in memory, but also resets RAMTOP and

RESTORES as well as clearing the GOSUB stack. In fact you

can use CLEAR on the Spectrum to reserve protected memory

space above RAMTOP: using a command like CLEAR 23800

sets RAMTOP to 23800. This cannot be done on the ZX81.

You have seen the modifications required for the ZX81 programs to

run on the Spectrum. Here is a summary for reference, to convert any

programs you may come across in books or magazines. All programs in

the text and the program library (Appendix VI) are annotated with any

required Spectrum changes.

ZX81 TO SPECTRUM PROGRAM CONVERSION

There are relatively few things to bear in mind when converting a

ZX81 program for the Spectrum. Of course, the ZX81 will not have

included colour or sound in the programs, and these are aspects you

can add for yourself. Note that ZX81 programs SAVEd on cassette will

not load into the Spectrum, even if no ZX81 specific commands have

been used.

Perhaps the first thing to note is that you must be in CAPS mode to

produce listings and programs which are identical to those of the

ZX81, (Use CAPS SHIFT with CAPS LOCK to stay in this mode

when you switch on.)

PLOT plots in high resolution - 256 x 176 pixels - whereas on the

ZX81 the resolution was only 64 x 44. Thus as a general rule you can

simply multiply by a factor of four to any PLOTted points in a ZX81

program to obtain a working Spectrum version. Hence PLOT 4,10 on

the ZX81 becomes PLOT 16,40 on the Spectrum.

The Spectrum has no FAST and SLOW modes, as it runs in the

equivalent of the SLOW mode all the time (always a screen display)

but at the speed of a fast mode. Just omit program lines that contain

the instructions FAST or SLOW.

The Spectrum does not have SCROLL as a program instruction as

the ZX81 does. To SCROLL the screen in a Spectrum program you

need to POKE the location 23692 with a number greater than 1, or

with -1. This temporarily disables the ‘SCROLL?’ request, and

when followed by PRINTing AT the last line (line 21) on the screen the

display will SCROLL.

Thus the ZX81 line:

200 SCROLL

is replaced by

200 POKE 23692, - 1 : PRINT AT 21,0;

Raising a number to a power on the ZX81 uses the symbol 4**’

whereas on the Spectrum we use 4 f \ RAND in ZX81 programs is

that instruction on the Spectrum keyboard, but prints as

RANDOMISE.

POKEing to the display file cannot be easily done, and the same is

true of PEEK used to identify a character on the screen. To get around

this we recommend using PRINT AT instead of POKEing the display,

and SCREENS to replace PEEKing the display. Hence you will have

to calculate what character cell position corresponds to any address in

the ZX81’s display file which is used in a program. Read the

description of the ZX81 display file in Unit Q4 in order to find out how

to do this.

PEEKing the character table in RAM is done equally simply on the

Spectrum, with the start of the character table being given by the

following PEEKs, plus 256:

PEEK 23606 + 256*PEEK 23607

This is usually set at 15360 - but you can POKE these addresses and

change the location at which the character table starts in memory. You

can therefore create an entirely new character set in RAM and have the

CHARS variable (stored in the locations above) point to 256 bytes

below it. All other system variables on the ZX81 have equivalents on

the Spectrum. This text has the system variables for both machines

listed in Appendix V.

Because of the amount of memory (6.5k) taken up for graphics on

the Spectrum, you will find that a large program for the 16k ZX81 (of

10k or so), will not fit into a 16k Spectrum. 48k Spectrum owners will

of course have no problems with this, but if contemplating keying in a

458 459

long program with the smaller machine it is worth making a crude

estimate of the program length, if the information is not given in the

documentation, The number of lines in the listing (total, not numbered

lines only), multiplied by 15 will give you a reasonable estimate (biased

on the high side) of the program length in bytes.

We will now go on to cover the additional Spectrum facilities and

functions, other than those connected with Colour, Graphics and

Sound, which are treated in Unit W3.

TAPE STORAGE

New keywords: VERIFY and MERGE,

Associated new keywords: LINE, DATA, SCREENS

(i) SAVING Information on Tape

The SAVE key is used to save information on tape. This can be:

(a) program and variables, (b) arrays, (c) bytes of memory

(memory contents)

When saving information on tape it is essential that the EAR piece jack-

plug is removed from the tape recorder.

(a) Programs and Variables

SAVE “filnam” - saves programs and variables.

SAVE “filnam” LINE 10-saves programs and variables

and when loaded next automatically runs itself from the given

line number.

(b) Arrays

SAVE “alpha” DATA a() - saves the numeric array a

specified under the name alpha.

SAVE “beta” DATA b$() - saves the string array b$

specified under the name beta.

(c) Bytes

SAVE “gamma” CODE 16384, 6912 -saves the bytes

specified. The first figure (in this case 16384) is the address of the

first byte to be saved and the second figure (in this case 6912) is

the number of bytes to be saved.

The particular bytes specified above will save the TV picture,

but a special key SCREENS is available to do this:

SAVE “gamma” SCREENS

(h) VERIFICATION of Information on Tape

The VERIFY key is used to check the information saved on the

tape against the information in the computer.

VERIFY “filnam” - checks programs and variables

VERIFY “alpha” DATA a() - checks numeric array
specified

VERIFY “beta” DATA b$() - checks string array specified

VERIFY “gamma” CODE 16384, 6912 —checks bytes

specified (first number - address of first byte, second

number - number of bytes).

(iii) LOADING Information from Tape

The LOAD key is used to load new information from the tape,

deleting any old information in the memory.

LOAD “filnam” - loads program and variables specified

(and automatically runs the program if the SAVE and LINE

instructions were used to save the program).

LOAD “alpha” DATA a() - loads numeric array specified by

alpha as array a in memory.

LOAD “beta” DATA b$() - loads string array specified by

beta as array b$ in memory.

(N.B. If insufficient memory is available, an error message

occurs and the old information in memory is not deleted.)

LOAD “gamma” CODE 16384, 6912 loads the bytes specified (first

number is the address of the first byte, second number is the number of
bytes).

LOAD “gamma” SCREENS is an alternative for the particular

bytes specified above which contain the TV picture.

(iv) MERGING Programs

The MERGE key is used to combine a program already in

memory with a program on tape (it may not be used on arrays or
bytes).

MERGE “delta” - adds the program delta (stored on tape) to

the program already in memory, overwriting any program lines

and variables in memory which are at the same line numbers or

have the same variable name as those on tape. For example:

Program in memory:

10 PRINT “hello”

20 PRINT

30 PRINT “goodbye”

40 PRINT

50 PRINT “end”

460 461

Program “delta” on tape:

10 PRINT “no”

20 PRINT “yes”

60 PRINT “repeat”

MERGE “delta” results in the program:

10 PRINT “no”

20 PRINT “yes”

30 PRINT “goodbye”

40 PRINT

50 PRINT “end”

60 PRINT “repeat”

Note the restriction on the use of MERGE. It can only be used for

numbered program lines. These can have defined arrays or variables

that are transferred with the program, but direct data (array values or

bytes) is not MERGEable. See Units Til and T12 for storing data,

and remember that as long as there is one program line, MERGE will

work.

PUTTING DATA INTO PROGRAMS

New keywords: READ, RESTORE and DATA

Extended function for INPUT key

(i) INPUT Statement

10 INPUT A$ allows input of one string

20 INPUT A,B,C,D allows input of four

numbers

30 INPUT “Enter your name”, N$ allows the part within

inverted commas to be

printed at the bottom of

the screen.

If we key in:

10 LET M$ = “SPECTRUM”

20 INPUT (“I am”;m$;“.”); “Your name?”, y$

these two lines will produce at the bottom of the screen: I am

SPECTRUM. Your name? “ cursor ”

It is also possible to use INPUT AT in a similar way to

PRINT AT:

10 DIM a$(5)

20 INPUT AT 0,0; a$(l); AT 1,0; a$(2); AT 2,0; a$(3); AT

3,0; a$(4); AT 4,0; a$(5).

This will result in the inputs being placed on separate lines (note

what these co-ordinates mean). The lower part of the screen will

move up to allow all input lines to be on screen. (The upper part

remains unaltered until the lower part would start to write on the

same line - the upper part then starts to scroll.)

10 INPUT LINE a$ allows input of a string without the

computer inserting quotes around the

cursor.

(ii) READ and DATA

These keys allow data to be stored internally within the

program. For example:

10 READ a,b,c

20 PRINT a,b,c

30 DATA 10,20,30

The computer looks at all lines containing DATA statements

and puts them sequentially into a data bank. A pointer is

associated with the data bank and is initially set to the first item.

10 20 30

t

When the program reaches a line with a READ statement, the

first data item is allocated to the variable (i.e. a - 10) and the

pointer moves to the second item and so on. So b = 20 and

c = 30.

Note (i) DATA items are separated by commas

(ii) variables in READ statements are separated by

commas

(iii) string data items must be in inverted commas

For example:

10 READ a$,b,c$,d

20 PRINT a$,b,c$,d

30 DATA “smith”, 90

40 DATA “jones”, 60

(iii) RESTORE

The RESTORE statement may be used to alter the position of

the pointer. For example:

10 READ a$,b

20 RESTORE

30 READ c$,d

462 463

40 PRINT a$,b,c$,d

50 DATA “smith”, 90, “jones”, 60

The effect of line 20 is to reset the pointer to the first item. Thus

a$ = “smith”, b = 90, c$ - “smith”, d = 90. It is also possible to

use RESTORE with a line number in which case the pointer is

reset to the first item of the data statement of that line (or

following lines). For example:

10 READ a$,b

20 RESTORE 100

30 READ c$,d

40 PRINT a$,b,c$,d

50 DATA “smith”, 90, “jones”, 60

100 DATA “brown”, 100, “white”, 120

200 DATA “black”, 8, “yellow”, 6

5 LET a = 10: LET b - 20

10 DEF FN p(x,y,z) = a*x f2 + b*y f 2 + z

20 PRINT FN p(l,2,3)

30 PRINT

40 PRINT FN p(3,2,l)

Note that any constants occurring (in this case a,b) are not included in

the FN; only the variable values are specified (in this case x, y and z).

Thus line 20 gives 93 and line 40 gives 171.

CHARACTER SET AND USER DEFINED GRAPHICS

(i) Character Set

The character set consists of 256 characters each having a code

between 0 and 255. The set consists of:

This will allocate a$ = “ smith ”, b = 90 and c$ = “ brown’ ’,

d - 100 (whereas 20 RESTORE gives c$ = “smith”, d = 90

and 20 RESTORE 200 gives c$ - “black”, d = 8).

If CLEAR is used on the Spectrum, it also does a RESTORE

on the data.

USER DEFINED FUNCTIONS

New keywords: DEF FN and FN

The user can define up to 26 numeric and 26 string functions in any

program.

A numeric function is named FN followed by a single letter -e.g.
FN Z.

A string function is named FN followed by a single letter and $ - e.g.

FN A$.

It is necessary to define the function using a DEF FN statement (i.e.

by pressing the DEF FN key). For example:

10 DEF FN a(x) = x f 3

20 PRINT FN a(3)

Line 10 defines the function and line 20 would give 33 = 27. For strings:

10 DEF FN q$(a$) = a$ (2 to 6)

20 PRINT FN q$(“harrison”)

Line 10 defines a string function and line 20 would give ‘arris'.

You may also use functions with several variables:

Control characters (code 0 to 31)

ASCII characters (plus the non-standard £ and ©)

Spectrum graphics symbols

User-defined graphics

The program given below will print out the complete character

set (excluding the control characters):

10 FOR n = 32 TO 255: PRINT CHR$ n; : NEXT n

(ii) User defined graphics

These are the letters A to U in graphics mode. They initially

print as these letters (in capitals), until defined. They enable one

to print a given shape in a character cell by pressing a single key.

EXAMPLE: Fill the screen with dogs. Begin by producing a

dog shape which fills a character cell when GRAPHICS D is

pressed and then display the dogs across the screen.

(i) Fill in appropriate squares in 8 by 8 cell

(ii) Allow 1 for ink, 0 for paper

(iii) Put appropriate numbers in data statements

Binary

11100001
11100010
11111100
00111100
00111100
00111100
00100100
00100100

X X X X

X X X X

X X X X X X

X X X X

X X X X

X X X X

X X

X X

Decimal

225
226
252

60
60
60
36
36

464 465

i© REM user defined graphics
20 REM definadog
3© FDR n=© TO y
4-0 RERD x
5© POKE USR “D'+n,X
S© NEXT n
7© DfiTfi 225,226,252,60,60,60,3

& , 36
©0 REM screenful of dogs
0© BORDER 4-; PRPER S: XNK ®: C

L-3

i©0 FDR l=0 TO 2© STEP 2
11© FOR C=© TO 30 STEP 2
12© PRINT RT l,c;'*0"
130 NEXT c
14-© NEXT l

The BIN key allows you to enter binary numbers - i.e. BIN

11100001 is equivalent to 225 in the DATA statement (line 65).

The plot of the user-defined graphic in the 8x8 grid, expressed

in binary form, can thus be centred directly with the use of BIN

into the DATA statement:

70 DATA BIN 11100001, BIN 11100010, etc.

OTHER KEYS

The following keys will only operate when the Sinclair microdrive and

the RS 232 (standard printer) interface become available:

OPEN # , CLOSE# , MOVE, ERASE, CAT and FORMAT.

The keys IN and OUT are associated with I/O ports (input and output

ports) and enable the SPECTRUM to communicate with peripheral

devices. The equivalent commands used by the operating system run

the ZX Printer. They are beyond the scope of the present text. The use

and format of these instructions will be specified in the documentation

of any equipment using them.

W3: Colour, Graphics and Sound

COLOUR

(i) BORDER AND PAPER

The screen is divided into two areas referred to as:

BORDER (the outer part) and PAPER (the central area). (24

lines of 32 characters.)

The instructions BORDER and PAPER are used to define the

colours of the areas.

The following colours are available:

0 black

1 blue

466

2 red

3 magenta

4 green

5 cyan

6 yellow

7 white

Magenta is a purple colour, and cyan is light blue.

Unless otherwise specified, both BORDER and PAPER are

white. The colour of border and paper can be changed to any of

the eight normal colours. For example:

BORDER 4: the border becomes green on pressing the

ENTER key

PAPER 2: no change occurs on pressing the ENTER

key (it merely cancels PAPER command

already existing). Press the ENTER key

again and the centre becomes red.

(On a black and white TV the above numbers correspond to

the order of brightness).

Both instructions can be used in programs:

10 BORDER 2: PAPER 6

These are global commands defining the whole border and

paper areas, PAPER may be used as a specific command (see

below).

(ii) PICTURE

The picture area affected by the global PAPER instruction

consists of 24 lines each of 32 positions, i.e. 24x 32 = 768

character cells. The screen that can normally be printed to is 22

lines of 32 character cells. The character cells have printing

characteristics (attributes) which may be specified.

Each character cell consists of 8 x 8 dots and has two colours

associated with it:

INK (foreground colour)

PAPER (background colour)

Normally each character cell has black ink and white paper.

In addition, each character cell also has a brightness

attributed with BRIGHT (normal or extra-bright) cor¬

responding to BRIGHT 0 and BRIGHT 1 and the attribute

FLASH with the possibility of no-flash or flash corresponding to

FLASH 0 and FLASH 1. For example:

10 PAPER 3 : INK 6 : BRIGHT 0 : FLASH 1

would result in background magenta, foreground yellow,

normal brightness and flashing. Flashing characters alternate

467

the ink and paper colours. In addition, 8 can be used with all

four statements meaning transparent (i.e. left as previous); 9

can be used with PAPER and INK meaning contrast. PAPER

will be dark (black) if INK is specified as a light colour (colours 0

to 3), light (white) if INK specified as a dark colour (colours 4 to

7). INK produces contrasting PAPER in the same way.

(iii) INVERSE, OVER AND A TTR

The statements INVERSE and OVER may also be used to

control the dot pattern printed in the character cells.

inverse or normal i.e. INVERSE 1 (inverse videos or

INVERSE 0 (normal video^

over or normal i.e. OVER 1 (overprints the new

character on top of the old)

OVER 0 (normal)

All the statements in (ii) and (iii) may be used in conjunction

with PRINT and INPUT commands and also with graphics

commands such as PLOT and DRAW. For example:

10 INPUT INK 2; FLASH 1; “What is your name?”; N$

20 PRINT PAPER 6; N$

which will result when run in ‘What is your name?’ flashing in

red and white and the name input (in black and white) is then

printed out in black on yellow. If not specified, the PAPER

instruction assumes the contrasting INK, FLASH 0 and

BRIGHT 0.

The attributes of any character cell (i.e. PAPER, INK,

BRIGHT and FLASH) on the screen may be determined using

the ATTR key, which returns a number made up as follows:

FLASH on (128), normal (0) +

BRIGHT on (64), normal (0) +

PAPER (8 * colour) +

INK (colour)

Thus, 10 PRINT ATTR (19,20) would give the number 162 if

the character cell at (19,20) is flashing (128), normal (0), green

paper (32) and cyan ink (2).

The TRUE VIDEO instruction gives the INK colour on

PAPER colour background. This may be changed to

INV.VIDEO (PAPER colour on INK colour). All succeeding

printed character squares have the attributes shifted as if

INVERSE had been used.

468

EXAMPLE 1

This is a simple program to display the colours available and to show

the effect of the transparency and contrast commands.

5 REM colours
10 FOR n=l TO 22s FOR p=0 TO 7
20 PAPER P: PRINT " H;
30 NEXT ps NEXT n
40 PAUSE 100
45 REM transparency and contra

st
50 INK 9s PAPER 6; PRINT AT 0,

0;
60 FOR n=l TO 66: PRINT "colou

rings";: NEXT D: PRINT
70 PAPER 7: INK 0: BRIGHT 0
80 PAUSE 100

EXAMPLE

This is a simple program drawing coloured straight lines with different

separations.

Line 30 - gives a black border.

Line 320 - gives paper and ink colours (selected at random,

excluding black and white).

Line 200 - resets paper and border to white, ink to black for listing

etc. after program has been run.

Notice how colours are character cell dependent not pixel dependent.

This program clearly shows this effect.

30 Bcrier 0
40 FOR x=0 TO 254 STEP 2
50 PLOT 128,88: DRAW -127+x,-8

7
60 NEXT x
65 GO SUB 300
70 FOR y=0 TO 174 STEP 3
80 PLOT 128,88: DRAW 127,-87+y
90 NEXT y
95 GO SUB 300

100 FOR z=0 TO 254 STEP 2
110 PLOT 128,88: DRAW 127-z,87
120 NEXT z
125 GO SUB 300
130 FOR a=0 TO 174 STEP 3
140 PLOT 128,88: DRAW -127,87-a
150 NEXT a
200 PARER 7: INK 0: BORDER 7
210 STOP
300 LET i= (5*RNDfl): LET p=INT

(5*RND)+1
310 IF i=p THEN GO TO 10
320 PAPER p: INK i
330 RETURN

469

GRAPHICS

New keywords: DRAW, CIRCLE, POINT

The screen is 22 lines by 32 columns - i.e. 704 character cells for

graphics use. Each character cell consists of 8 by 8 dots (called pixels).

Thus the pixel co-ordinates go from (0,0) bottom left-hand corner to (255,

175) the top right-hand corner.

Colour Graphics

You can do graphics in colour but remember that the pixels in any

one character cell can only be either of the two colours corresponding to

the current ink and paper values for the character cell.

For example, let’s attempt to draw three circles one black, one blue and

one red:

10 INK 2 : CIRCLE 40,40,30 (red circle)

20 INK 1 : CIRCLE 60,60,40 (blue circle)

30 INK 0 : CIRCLE 50,50,40 (black circle)

This example shows that colour graphics is possible but can only be

handled with great care. It is important to be clear about character cells

as opposed to pixels. For example, you can draw three circles one black,

one blue and one red:

10 INK 2 : CIRCLE 70,70,70 (red circle)

20 INK 4 : CIRCLE 70,70,50 (blue circle)

30 INK 0 : CIRCLE 70,70,30 (black circle)

Graphics Commands

PLOT X,Y - inks in the pixel at the point (X,Y)

DRAW XI, Y1 - inks in the line from the point specified previously to

470

the point XI pixels to the right and Y1 pixels up from

it. For example:

10 PLOT 20,30 - plots point (20,30)

20 DRAW 50,60 - draws line from point (20,30)

to the point (20 + 50,30 + 60),

i.e. (70,90).

DRAW X2,Y2,A - draws an arc of a circle from the previously spec¬

ified point to the point X2 pixels to the right and

Y2 pixels up from it with an angle A radians

(anticlockwise). For example:

10 PLOT 30,30

20 DRAW 60,60

30 DRAW 80,80, PI

CIRCLE X,Y,A draws a circle centre (X,Y) and radius A

POINT (X,Y) will give 0 if pixel at (X,Y) is paper colour and 1 if ink.

For example:

10 CIRCLE 40,40,30 - draws circle centre (40,40) and radius 30

20 PRINT POINT (40,40)- pixel paper - 0

30 PRINT POINT (70,70)- pixel ink - 1

The commands INVERSE and OVER may be used with the.graphics

commands. For example:

PLOT INVERSE 1 will put paper colour at pixel

PLOT OVER 1 will change ink to paper at pixel

There is no UNPLOT on the Spectrum. We must use INVERSE or

OVER. PLOT OVER 1 or PLOT INVERSE 1 effectively unplot the

pixel. DRAW OVER 1 may be used to rubout a line while preserving

the original information; compare result of program 1 with that of

program 2.

a© for n=i to aa

30 NEXT n
4-© PLOT ©,©; DRAW £55, IT5
*5 STOP
5© PLOT ©,©; DRflU INUERSE l;25

5,175

1© FQR^n=i^TO^aa

3© NEXT n
4-0 PLOT 0,0: DRRU £55.175
4-5 STOP
50 PLOT ©,0;

5,175
DRRU INUERSE i;25

471

Try this one-line program:

10 PLOT 65,27: DRAW OVER 1; 120,120,49*3*PI

Try different values in place of 49.

EXAMPLES

1 Use of PLOT and DRAW commands (straight lines)

This program makes use of these statements to draw a histogram

by drawing a series of rectangles.

Lines 70 and 80 produce a rectangle as shown:

10 REM Histogram using DRAW
20 READ X0,y0: LET x~x0
25 REM Coordinates of LHS
30 READ w,n
35 REM Width and number of uni

ts
40 FOR j=l TO n
50 READ h
60 REM Unit height
70 PLOT x,y0
80 DRAW w,0: DRAW 0,h: DRAW -w

,0: DRAW 0,-h
90 LET x=x-K*/

100 NEXT j
105 DATA 5,5,20,12
110 DATA 12,45,67,98,134,167,17

0,136,124,87,46,20

472

2 Use of DRA W command (arcs of circles)

This program produces a pattern by drawing four sets of

semicircles. The basic plotting line is illustrated by the diagram

of the effect of line 40. This is repeated within a series of four
loops.

10 LET a=0
20 FOR n=129 TO 254 STEP 3
30 LET a=a+l
40 PLOT n,0: DRAW -6*3,0,91
50 NEXT n
60 LET b=0
70 FOR n=129 TO 254 STEP 3
80 LET b=*bfl
90 PLOT n,175: DRAW -6*b,0,-PI

100 NEXT n
110 LET c=0
120 FOR n~90 TO 174 STEP 3
130 LET c-c-fl
140 PLOT 0,n: DRAW 0,-6*c,-PI
150 NEXT n
160 LET d“0
170 FOR n=90 TO 174 STEP 3
180 LET d=d+l
190 PLOT 255,n: DRAW 0,-6*d,PI
200 NEXT n

473

Try inserting the following lines to see the effect of colour (note

graphics is pixel but colour is character cells),

5 INK 2

55 INK 5

105 INK 6

155 INK 3

3 Use of CIRCLE command

This command draws a circle and by varying the position of the

centre and the radius of the circle we can obtain an acceptable

drawing of a cone:

5 REM Draw a cone
10 READ i,pfb
15 REM ink,paper,border
20 READ cr
25 REM radius of cone
30 CLS : INK i: BORDER b: PAPE

R p: CLS
40 LET x=50
50 FOR r=cr TO 1 STEP -1
60 CIRCLE x,90 r r
70 LET x~x-f3
80 NEXT r
90 DATA 1,4,6

100 DATA 50,3

4 Use of user-defined functions for graph plotting

The program below illustrates the use of the DEF FN and FN

instructions in plotting graphs. Line 5 defines the function. Line

10 bypasses the subroutines (lines 20 to 100) and the main

program first defines a = 5 (line 120), then calls the first plot

subroutine (lines 20 to 50), which uses a loop to define values of

x. Line 30 makes the variable b equal to COS x and passes

control to the subroutine at line 200 to evaluate y using the FN

(y) instruction in line 200. Note this is a nested subroutine. Line

210 plots the results with suitable scale factors. On return to the

subroutine the next value of x is taken and the process repeated.

On return to the main program, the second subroutine, lines 70

to 100, is called, to plot the SIN x function by making b = SIN x.

The variable a is redefined to equal 15 in line 150 on

completion of the first two plots, and the subroutines are called

in sequence again. Note the capability to define a function using

variables, and then define the values of the variables as

appropriate. In this case, two values (COSx and SINx) are given

to b, and the amplitude a is defined as first 5, then 15. Four plots

are produced from the one user-defined function of line 5.

5 DEF FN y(X)= b*3
1© GO TO IS©
14-
15 REM * ^FUNCTION ONE PLOT **

J^SUBROLITIME ' **
16
£© FOR X =0 TO £5 STEP *1
30 LET b=CD5 X: GO 5US 200
40 NEXT X
5© RETURN
55 REM **END FN ONE SUB ** **********************.$
56
57
6© REM *^FUNCTION TUO PLOT **

* ^SUBROUTINE **
01
7© FOR X=0 TO 35 STEP „ 1
80 LET b~SIN X: GO SUB £00
3© NEXT X

10© RETURN
1@5 REH **END FN TUO SUB ** ***********************
106
11© REM **********************

**HRIN PROGRRM **
120 LET R=5
13© GO SUB 2©
14-0 GO SUB 70
150 LET a=15
16© GO SUB 2©
17© GO SUB 70
IS© STOP
IBS REM **END MftIN PROGRRM**

186
190 REM *SUBROUTINE-CflLCULRTE**

*FUSING FN RND PLOT **
£0© LET y=FN y(X)
21© PLOT X*1©^M*3*B©
22© RETURN
225
230 REM **ENDSUB FUNCTION USE** ***********************

SOUND

New keyword: BEEP

BEEP 6, 2 produces a note of duration 6 seconds and & pitch 2 semitones

above middle C. The sound is fairly quiet; however fractional changes

in pitch are available and it is possible to tune it to different

instruments. To obtain the even-tempered scale of C major:

BEEP 1,0 : BEEP 1,2 : BEEP 1,4 : BEEP 1,5 : BEEP 1,7:

BEEP 1,9 : BEEP 1,11 : BEEP 1,12

474 475

The short program below gives some idea of the useful musical range

and how it may be used for sound effects.

5 REM Musical rariQe
1© RERD Rl,p2
IS REM lowest and highest freq
20 FOR n =pJ. TO PH
30 BEEP
40 PRINT RT (13-nszn . (n+l/SJ ;

50 NEXT n
53 DRTR -25,30
60 PRU5E 200; Cl.S
70 REM sound effect

El FDR n=&i TO £0 STEP
95 PRINT RT <S0-nX23,ic

1©0 BEEP «0S,n
XX© LET X =X -1
12© NEXT n
130 BEEP .,05,-25: BEEP 1 y 3©

476

APPENDIX I

ZX81 BASIC Summary

CONVENTIONS

n or m or p

s

e

V

<s>

[]
$

numeric expression
string expression

expression (string or numeric)

variable name

statement

indicates an optional item

indicates a string instruction

Numeric variables are first character a letter, then any alphanumeric characters.

String variables are A to Z, followed by $.

OPERATING COMMANDS

LOAD s

SAVE s

RUN [n]

CLEAR

NEW

STOP

CONT

FAST

SLOW

Load a program from tape. String may be null

(“”) (Loads first program)

Save a program on tape

Run program [starting at line n]

Resets all variables in program

Clears out program and variables

Stops program execution

Starts execution after BREAK or STOP

Screen not displayed until end, PAUSE,

INPUT, SLOW. Computes only.

Screen displayed continuously, whilst

computing

INPUT/OUTPUT INSTRUCTIONS

INPUT V

INKEY$

LIST [n]

PRINT [e][,c][;e][AT n,m;][TABn;]
CLS
PLOT m,n

UNPLOT m,n

LLIST [n]

LPRINT [e][,e][;e][TAB n;]
COPY

Input numeric or string variable from keyboard

Reads current input character. Does not wait for
key to be pressed.

Displays program [starting from line n]

Print on screen

Clears the screen

Plot J4 graphic char.) CK = m< = 63 horizontal

Unplot pixel > 0< = n< = 43 vertical

List program on printer [starting from line n]

Print on line printer

Print a copy of screen on printer

OTHER INSTRUCTIONS

POKE n,m Store the value m in memory location n.

CK = m< = 255.

PEEK n Returns the value stored in memory location n

PAUSE n Halts program for n/50seconds (n/60 in U.S.).

If n>32767 then pauses until key pressed.

(n<65535)

REM REMARK - comments. Ignored in program

execution.

LET V[$] - e Assigns the value of e to V

477

DIM V[$] (n[,mj)

RAND [n]

RND

GOTO n

GOSUB n

RETURN

IF e THEN <s>

FOR V = n TO m [STEP p]

<s>

Ks>]

NEXT V

Dimensions array n by m (numeric), n strings of

length m if string
Random number seed

Function returns a random number n. 0< = n<l

Transfers control to line n

Go to Subroutine at line n

Return from subroutine to line after last GOSUB

If e is true THEN statement s is done, if e is

false then s is not done, For e see expressions,

Evaluates as TRUE - 1, FALSE - 0

V is any single letter control variable,

m,n,p any numeric expressions. STEP 1 is

assumed if STEP not specified

Increments V by STEP. Goes to next line if
V>m (m>n) or V<m (n>m).

TRIG FUNCTIONS

4 NOT

3 AND

2 OR

ZX Spectrum Basic Summary

CONVENTIONS

n, m or p

s

e

V

<s>

[1

Numeric variables are first character

String variables are a letter followed

logical inversion

logical AND

logical OR

numeric expressions

string expression

expression (string or numeric)
variable name

statement

indicates an optional item

a letter then any alphanumeric characters.

>y $.

SIN n Sine n
COS n Cosine n
TAN n Tangent n
ASN n Arc Sine n (ARCSIN on keyboard)
ACS n Arc Cosine n (ARCCOS on keyboard)
ATN n Arc Tangent n (ARCTAN on keyboard)

n evaluated as radians

NUMERIC FUNCTIONS

EXP n

LN n

SQR n
INT n

ABS n

SGN n
PI (n)

STRING FUNCTIONS

LEN S

CHR$ n

CODE s

STR$ n

VAL s

EXPRESSIONS

PRIORITY

12 ()
11 any function
10 **

9 -s

8 *

7 /

6 + -

5 = ,<>,<>,< = ,> =

Exponent n or en

Loge n or In n

Square root of n

Integer of n (rounds down)

Absolute value of n

1 if n is positive, 0 if zero, - 1 if negative

3.1415927

Length of string s

Character of code n (single character string)

Code of first character in string s

Convert numeric expression to String

Convert string to numeric expression

String concatenation

bracketed expressions

functions

exponentiation
unary minus

multiplication

division

addition & subtraction

equality & inequality

OPERATING COMMANDS

BREAK

CLEAR

CLEAR n

CONT

DELETE

EDIT

ENTER

GRAPHICS
LOAD s

LOAD s CODE n,m

LOAD s DATA V()

MERGE s

NEW

RUN [n]
SAVE s

SAVE s LINE n

SAVE s CODE n,m

SAVE s SCREEN $

SAVE s DATA V()

STOP

VERIFY s

VERIFY s CODE n,m

VERIFY s DATA V()

interrupts operation e.g. execution, printer

clears variables

changes position of RAMTOP

continues execution after BREAK or STOP

allows deletion of character

allows editing of current line

line entered into program

puts into graphics mode

clears program and existing variables and loads

program specified from tape, (string may be *°*

in which case the first program is loaded)

loads m bytes into memory starting at address n

loads specified array (string or numeric) into
memory

merges program s with the one already in

memory

clears program and variables

runs program [starting at line n]

Saves program and variables on tape

saves program so that a LOAD is automatically

followed by a GOTO n

saves m bytes starting at address n

saves the picture on tape

saved specified array (string or numeric) on tape

stops program execution

verifies that program specified has been saved

on tape
verifies bytes specified have been saved on tape

verifies array specified has been saved on tape

OTHER INSTRUCTIONS

BIN n

DATA el, e2, ...
DEF FN

puts binary number n into decimal

separates multiple statements on a line

gives data items within a program
user-defined function definition. It must be

478 479

FN

followed by the name (single letter) of the string

or numeric function and the definition - e.g.

FNa(x,y,z) =xf3+y^4+z^5

calls up the user-defined function. Arguments

DIM V[$](n[,m])

enclosed in brackets - e.g. FNa(3,5,7)

dimensions array V. Numeric arrays of n rows

[and m columns]. String array of n strings each

of length m characters. Multi-dimension arrays

possible
FOR V = n TO m [STEP p] V a single letter, initiates a loop
NEXT V V a single letter, completes loop
GOSUB n go to subroutine at line n
RETURN returns from subroutine to main program

GOTO n transfers control to line n
IF e THEN <s> executes statement when the condition is met.

(There may be several numeric and logical

conditions)
IN n returns the byte read from I/O port n
OUT n,m writes value m to I/O port n
LET V[$] = e[$] assigns value e to variable V
PAUSE n makes program wait a specified time (n = 0 waits

for ever, n = 1 to 65535 waits n/50 seconds in

UK and n/60 seconds in US)
PEEK n returns the value stored in the memory location

POKE n,m
n

stores value m in memory location n

READ Vl[$], V2[$], ... allocates variables the values specified in DATA

statements.
USR n

GRAPHICS

calls the machine-code routine starting address n

22 lines with 32 columns available.

Each character cell consists of 8 by 8 pixels.

256 horizontal points and 176 vertical points.

draws a circle centre (n,m) and radius p

draws line [arc] from previous specified point to

a point relative n horizontal and m vertical
[turning through angle p radians (anticlockwise

if p positive)]
Plots a pixel

0< - n< = 255 horizontal

0< = m< =175 vertical
returns 0 (paper colour) or 1 (ink colour) of the

pixel (n,m)

COLOURS:

0 - black

1 - blue

2 - red

3 - magenta

4 - green

5 - cyan

6 - yellow

7 - white

CIRCLE n,m,p

DRAW n,m[,p]

PLOT n,m

POINT (n,m)

480

Picture is divided into 768 (24 lines of 32 columns) character cells.

ATTR (n,m) gives colour attributes of the character cell (n,m)

0< = n< = 23 lines
0< = m< - 31 columns

BORDER n makes border specified colour (n = 0 to 7)

BRIGHT n controls brightness (n = 0 normal, n = 1 bright,
n = 8 transparent)

FLASH n controls flashing (n = 0 normal, n = 1 flash, n = 8
no change)

INK n makes ink (foreground) specified colour (n = 0 to

7, n = 8 transparent, n = 9 contrast)

INVERSE n controls dot pattern (n = 0 normal, n=l
inverse)

OVER n controls overprinting (n = 0 normal, n=l

mixing)

PAPER n makes paper (background) specified colour

(n = 0 to 7, n = 8 transparent, n = 9 contrast)

SOUND

BEEP n,m produces sound of duration n seconds and pitch

m semitones above (or below) Middle C.

INPUT/OUTPUT INSTRUCTIONS

GLS

COPY

INKEY$

INPUT V[$]

INPUT LINE V$
LIST [n]

LLIST [n]

LPRINT [e][,e][;e][TAB n]

PRINT [e][,e][;e][ATp,m][TAB m]

clears the screen

prints out copy of screen on the printer

reads current input character. Does not wait for

key to be pressed.

input numeric [or string] variable from
keyboard

allows string variable to be input without quotes

displays program [starting from line n]

lists program on printer [starting from line n]

prints out on line printer

prints on screen

22 lines 0< = p< = 21
32 columns 0< = m< = 31

TRIG FUNCTIONS

Arc cosine n

Arc sine n

Arc tangent n
Cosine n

Sine n

Tangent n

(n evaluated in radians)

NUMERIC FUNCTIONS

AGS n

ASN n

ATN n

COS n

SIN n

TAN n

ABS n absolute value of n

EXP n exponential n (i.e. en)

INT n integer of n (rounds down)

481

APPENDIX II LN n

PI
RAND [n]

RND

SGN n

SQR n

STRING FUNCTIONS

CHR$ n

CODE s

LEN s

STR$ n

VAL s

VAL$ s

natural logarithm of n (i.e. log n or In n)

n, 3.1415927

random number seed

function returns a random number between 0

and 1

returns 1 if n is positive, 0 if zero, - 1 if negative

square root of n

character of code n

code of first character of string s

returns length of string s
converts numeric expression into string

converts string expression into numeric

converts s to a string expression (strips off

quotes)

PRIORITY see table for ZX81.

ZX81 Error Codes

Code Meaning

0 Successful completion, or jump to line number

bigger than any existing. A report with code 0 does

not change the line number used by CONT.

1 The control variable does not exist (has not been set

up by a FOR statement) but there is an ordinary

variable with the same name.

2 An undefined variable has been used.

For a simple variable this will happen if the variable

is used before it has been assigned to in a LET

statement.
For a subscripted array variable it will happen if the

variable is used before it has been dimensioned in a

DIM statement.

For a control variable this will happen if the variable

is used before it has been set up as a control variable

in a FOR statement, when there is no ordinary

simple variable with the same name.

For a numeric INPUT, will occur if non-numeric

input received.

3 Subscript out of range.

If the subscript is negative, or bigger than 65535

then error B will result.

4 Not enough room in memory. Note that the line

number in the report (after the /) may be incomplete

on the screen, because of the shortage of memory:

for instance, 4/20 may appear as 4/2.

5 No more room on the screen. CONT will make

room by clearing the screen.

6 Arithmetic overflow: calculations have led to a

number greater than about 1038.

7 No corresponding GOSUB for a RETURN

statement.

8 You have attempted INPUT as a command (not
allowed).

9 STOP statement executed. CONT will not try to

re-execute the STOP statement, but continues from

next line.

A Invalid argument to certain functions.

B Integer out of range. When an integer is required,

the floating point argument is rounded to the nearest

integer. If this is outside a suitable range then error

B results.

Situations

Any

NEXT

Jumping into a loop.

Any

Subscripted variables

(Lists and arrays)
Substrings

LET, INPUT, DIM,

PRINT, LIST, PLOT,

UNPLOT, FOR,

GOSUB. Sometimes

during function

evaluation.

PRINT, LIST.

Any arithmetic. Division

by zero is common cause.

RETURN. No STOP

statement before
subroutine is common

cause.

INPUT

STOP

SQR, LN, ASN, ACS,

YAL

RUN, RAND, POKE,

DIM, GOTO, GOSUB,

LIST, LLIST, PAUSE,

PLOT, UNPLOT,

CHR$, PEEK, USR

482 483

C The text of the (string) argument of VAL does not VAL
form a valid numerical expression.

D (i) Program interrupted by BREAK. At the end of any

statement as the program
runs or in LOAD, SAVE,

LPRINT, LUST or

COPY.

(ii) The INPUT line starts with STOP. INPUT

F The program name provided is the empty string. SAVE

Spectrum Error Codes

The report has a code number or letter (so that you can refer to the following table), a

brief message explaining what happened and the line number and statement number

within that line where it stopped. (A command is shown as line 0. Within a line,

statement 1 is at the beginning, statement 2 comes after the first colon or THEN, and
so on.)

The behaviour of CONTINUE depends very much on the reports. Normally,

CONTINUE goes to the line and statement specified in the last report, but there are
exceptions with reports 0, 9 and D.

Here is a table showing all the reports. It also tells you in what circumstances the
report can occur.

Code Meaning Situations

0 OK Any

Successful completion, or jump to a line number
bigger than any existing. This report does not

change the line and statement jumped to by
CONTINUE.

1 NEXT without FOR

The control variable does not exist (it has not been

set up by a FOR statement), but there is an ordinary
variable with the same name.

2 Variable not found

For a simple variable this will happen if the variable

is used before it has been assigned to in a LET,

READ or INPUT statement, loaded from tape or

set up in a FOR statement. For a subscripted

variable it will happen if the variable is used before it

has been dimensioned in a DIM statement or loaded
from tape.

3 Subscript wrong

A subscript is beyond the dimension of the array, or

there are the wrong number of subscripts. If the

subscript is negative or bigger than 65535, then error
B will result.

4 Out of memory LET, INPUT, FOR,

There is not enough room in the computer for what DIM, GO SUB, LOAD,

you are trying to do. If the computer really seems to MERGE. Sometimes

be stuck in this state, you may have to clear out the during expression

command line using DELETE and then delete a evaluation,
program line or two (with the intention of putting

them back afterwards) to give yourself room to
manoeuvre with - say - CLEAR.

NEXT

Jumping into a loop is a
common cause.

Any

Subscripted variables

(arrays),

Substrings

484

Situations Code Meaning

5 Out of screen

An INPUT statement has tried to generate more

than 23 lines in the lower half of the screen. Also

occurs with PRINT AT 22,...

6 Number too big

Calculations have led to a number greater than

about 1038.

7 RETURN without GO SUB
There has been one more RETURN than there were

GO SUBs.

8 End of file

9 STOP statement
After this, CONTINUE will not repeat the STOP,

but carries on with the statement after, or next line

after, STOP.

A Invalid argument

The argument for a function is no good for some

reason.

B Integer out of range

When an integer is required, the floating point

argument is rounded to the nearest integer. If this is

outside a suitable range then error B results.

G Nonsense in BASIC

The text of the (string) argument does not form a

valid expression.

D BREAK - CONT repeats

BREAK was pressed during some peripheral

operation.

The behaviour of CONTINUE after this report is

normal in that it repeats the statement. Compare

with report L.

E Out of DATA

You have tried to READ past the end of the DATA

list.

F Invalid file name

SAVE with name empty or longer than 10

characters.

G No room for line

There is not enough room left in memory to

accommodate the new program line.

H STOP in INPUT

Some INPUT data started with STOP, or - for

INPUT LINE - BREAK was pressed.

Unlike the case with report 9, after report H

CONTINUE will behave normally, by repeating the

INPUT statement.

I FOR without NEXT
There was a FOR loop to be executed no times (e.g.

FOR n = 1 TO 0) and the corresponding NEXT

statement could not be found.

INPUT, PRINT AT

Any arithmetic. Division

by zero is common cause.

RETURN. No STOP
statement before a

subroutine is common.

Microdrive, etc,

operations only.

STOP

SQR, LN, ASN, ACS,

USR (with string

argument)

RUN, RANDOMIZE,

POKE, DIM, GO TO,

GO SUB, LIST, LLIST,

PAUSE, PLOT, CHR$,

PEEK, USR (with

numeric argument)

VAL, VAL$

LOAD, SAVE, VERIFY,

MERGE, LPRINT,

LLIST, COPY. Also

when the computer asks

scroll? and you type

READ

SAVE

Entering a line into the

program

INPUT

FOR

485

Code Meaning

J Invalid I/O device

K Invalid colour

The number specified is not an appropriate value.

L BREAK into program

BREAK pressed, this is detected between two

statements. The line and statement number in the

report refer to the statement before BREAK was

pressed, but CONTINUE goes to the statement

after (allowing for any jumps to be done), so it does
not repeat any statements.

M RAMTOP no good

The number specified for RAMTOP is either too big
or too small.

Situations

Microdrive, etc.,

operations only

INK, PAPER,

BORDER, FLASH,

BRIGHT, INVERSE,

OVER; also after one of

the corresponding control

characters

Any

CLEAR; possibly in

RUN

N Statement lost RETURN, NEXT,

Jump to a statement that no longer exists. CONTINUE

O Invalid stream Microdrive, etc,

operations only

P FN without DEF FN

User-defined function

Q. Parameter error FN

Wrong number of arguments, or one of them is the

wrong type (string instead of number or vice versa).

R Tape loading error VERIFY, LOAD or

A file on tape was found but for some reason could MERGE
not be read in, or would not verify.

486

APPENDIX III

ZX81 Character Codes by Keyboard Arrangement

Note: Character codes for both the ZX81 and the Spectrum are listed in order of code

number in Section P, and an alphabetic list for the Spectrum is included in Unit W-l.

1. KEYBORD CHARACTERS

CHARACTER CODE CHARACTER CODE

PLOT 246 NEW 230

UNPLOT 252 SAVE 248

REM 234 DIM 233

RUN 247 FOR 235

LINE 2 RAND 249 LINE 3 GOTO 236

RETURN 254 GOSUB 237

IF 250 LOAD 239

INPUT 238 LIST 240

POKE 244 LET 241

PRINT 245

COPY 255

CLEAR 253

CONT 232

CLS 251

LINE 4 SCROLL 231

NEXT 243

PAUSE 242

BREAK —

TOTAL 26 Characters.

May be entered when 1K | mode cursor appears.

Obtained by pressing desired key.

2. SHIFT CHARACTERS

CHARACTER CODE CHARACTER CODE

EDIT 117 < < j > 192

AND 218 OR 217

THEN 222 STEP 224

TO 223 < = 219

LINE 1 114 LINE 2 <> 221

113 >= 220

t 112 $ 13

115 (16

GRAPHICS 116) 17

RUBOUT 119 t < 11

487

4. GRAPHICS CHARACTERS
CHARACTER CODE CHARACTER CODE

STOP 227 . 14

LPRINT 225 > 25

SLOW 228 ? 15

FAST 229 / 24

LINE 3 LLIST 226 LINE 4 * 23
* * 216 < 19
- 22 > 18

+ 21 > 26
= 20 £ 12
FUNCTION 121

TOTAL 39 Characters.

Obtained by pressing | SHIFT-) and [CHARACTER | keys together.

3. LETTER CHARACTERS

CHARACTER CODE CHARACTER CODE

1 29 A 38

2 30 S 56

3 31 D 41

4 32 F 43
LINE 1 5 33 LINE 3 G 44

6 34 H 45
7 35 j 47
8 36 K 48

9 37 L 49
0 28 NEWLINE 118

(ENTER)

Q, 54 SHIFT
w 60 Z 63
E 42 X 61
R 55 c 40

LINE 2 T 57 LINE 4 V 59
Y 62 B 39
U 58 N 51
I 46 M 50
o 52 27
p 53 SPACE 0

TOTAL 39 Characters.

May be entered when [l] mode cursor appears.

Obtained by pressing the desired key.

CHARACTER CODE CHARACTER CODE

n 1 jggj
8

a 2 0 10
□ 135 0 9
kJ 4 ■ 138

LINE 1 u 5 LINE 3 m iH 137
B 131 HI Si 136
□ 3 inverse — 150
a 133 inverse + 149

inverse = 148

m 129 inverse : 142
HQ 130 inverse ; 153

B 7 inverse ? 143
LINE 2 m 132 LINE 4 inverse / 152

m 6 inverse * 151

5 134 inverse < 147
inverse $ 141 inverse > 146
inverse (144 inverse , 154
inverse) 145 inverse £ 140
inverse 79 139

TOTAL 36 Characters.

Entered in [g] mode, obtained by pressing [SHIFT] [GRAPHICS [keys.

Character obtained by pressing | SHIFT| [CHARACTER^

5. INVERSE GRAPHICS CHARACTERS

INVERSE INVERSE
CHARACTER CODE CHARACTER CODE

1 157 Q, 182

2 158 W 188
3 159 E 170
4 160 R 183

LINE 1 5 161 LINE 2 T 185

6 162 Y 190
7 163 U 186
8 164 I 174

9 165 O 180
0 156 P 181

488 489

INVERSE

CHARACTER CODE

INVERSE

CHARACTER CODE

A 166 Z 191

S 184 X 189

D 169 c 168

F 171 V 187

LINE 3 G 172 LINE 4 B 167

H 173 N 179

J 175 M 178

K 176 155
L 177

(SPACE)

128

TOTAL 38 Characters.

May be entered in | G | mode obtained by |

Obtained by pressing desired keys.

SHIFT | | GRAPHIC | keys.

6. FUNCTION CHARACTERS

CHARACTER CODE CHARACTER CODE

SIN 199 LN 205

COS 200 EXP 206

TAN 201 AT 193

INT 207 INKEY$ 65

LINE 2 AND 64 LINE 4 NOT 215

STR$ 213 "(pi) 66

CHR$ 214

CODE 196

PEEK 211
TAB 194

ARCSIN 202
ARCCOS 203

ARCTAN 204

LINE 3 SGN 209

ABS 210
SQR 208

VAL 197

LEN 198

USR 212

TOTAL 25 Characters. _ __

May be entered in [f| mode obtained by pressing [SHIFT] | FUNCTION

key.

Characters obtained by pressing desired character key.

The | F~1 mode operates for only one character input.

490

APPENDIX IV

Use of Cassette Tapes

The following information concerns the use of cassette tapes for program storage and

retrieval. Other details of personal tape library practice can be found in the main text.

1 New tapes: Always ‘fast forward’ and ‘rewind’ a tape completely before use for

program storage. This ensures an even winding and tension. If you have the

patience, running the tape one way in ‘play’ mode after fast forward and reverse is
desirable.

2 Do not use the first 15 or 20 seconds of any tape. Most tape problems of coating
loss and stretch occur in this portion of the tape.

3 Always rewind tapes fully after use, so as to not leave tape with program data

exposed. Never touch the surface of the tape. Before inserting a tape in the cassette

player, take up the slack in the tape (using a finger or a pencil) by turning one
drive wheel until the other moves.

4 Always replace tapes in the correct library boxes immediately after use. Leave the
label side (if only one label) showing.

5 Tapes with programs meant to be permanent should have the tags removed to

prevent accidental erasure. The holes can always be covered with sticky tape if you
decide in the future to record over a program.

6 Glean the tape-recorder heads after 2 or 3 hours’ running time with a head cleaner

cassette or head cleaner fluid. De-magnetise heads every 10 or 12 hours’ running.

7 Leave long gaps (at least 20 seconds) between programs, if more than one program

is on a tape. Note the tape counter readings for beginning and end of each

program. Remember that the tape counter is not highly accurate. You can use the

TV screen to find a gap between programs, watching for the thick black lines of a

program load display change to the thin diagonal lines of a ‘blank tape’ display.

8 Loading problems. These are notes for the ZX81 user. No problems should be

encountered with the Spectrum in this respect. For each individual ZX81/cassette

system, no problems should be encountered with SAVEing and LOADing

programs with the TONE control set high, and the VOLUME at 3/4 volume. The

characteristics of tape recorders vary somewhat, however, and problems may be

encountered in LOADing programs which have been SAVEd on a different

recorder. Here is a sequence to be followed if a program proves difficult to LOAD.

A Set the TONE control for maximum treble (‘High’).

B Set the VOLUME to about three-quarters of the maximum.
C Rewind tape to the beginning.

D Type: LOAD “A” -i.e. any letter/word except the program name.

Press PLAY on the cassette, then NEWLINE (ENTER) on the ZX81.

When the thin, slightly sloping black lines change to the programs’ typical

thick black and white lines, with approximately equal black and white
bands, with the white crossed by vertical black lines:

(a) DECREASE THE VOLUME until this changes back to the THIN
lines.

(b) Now INCREASE THE VOLUME, noting where the THICK black

and white program lines eventually seem to become more unsettled
or predominantly black.

Also if you listen to the recording you may be able to notice when the
volume is too high and causes distortion.

E Set the VOLUME midway between these two points (a) and (b).
Rewind tape.

Type: LOAD “(The program name)”.

Press PLAY on the cassette, then NEWLINE (ENTER) on the ZX81.

If the screen suddenly clears before the program should end, this may
mean volume is still too low.

491

The ZX81 may need to be re-set by pulling out the d.c. supply plug and

re-inserting it if the cursor does not return to the screen, either by itself or

when BREAK is used.

LOAD again, slightly increasing the volume, after rewinding the tape.

If you cannot get a definite, THICK black and white line pattern even at

full volume then your recorder may not be powerful enough to load from

the signal strength on this specific tape. Test this by using another

recorder, or recorder/ZX system. Once the program has LOADed, SAVE

it on to a tape in your own recorder.

Turn off cassette recorder and take the EAR/MIC leads out of the ZX81

before swapping recorders, or else you may cause the system to crash

whilst taking out and re-inserting the plugs.
9 NEVER place a tape on top of the TV monitor. This can affect the signals stored

on the tape because of the electromagnetic field generated by the TV.

492

APPENDIX V

System Variables - ZX81

Notes:

X The system may crash if the variable is poked,

N Poking the variable will have no lasting effect.

S The variable is saved by SAVE.

The number in column 1 is the number of bytes storing the variable. For two bytes,

the first one is the less significant byte. To poke a value M to a two-byte variable at
address N use:

POKE N (M - 256*INT(M/256))

POKE N + 1, INT M/256

To peek its value, use the expression

PEEK N + 256*PEEK(N + 1)

Notes Address_Name_Contents_

1 16384 ERR_NR 1 less than the report code. Starts off at 255

(for - 1), so PEEK 16384, if it works at all,

gives 255. POKE 16384, N can be used to

force an error halt: N < = 14 gives one of the

usual reports, 15 < = N< - 34 or 99

< = N<127 gives an non-standard report,
and 35 < = N < = 98 may disrupt the display

file.

XI 16385 FLAGS Various flags to control the BASIC system.

X2 16386 ERR_SP Address of first item on machine stack (after
GOSUB returns).

2 16388 RAMTOP Address of first byte above BASIC system

area. You can poke this to make NEW

reserve space above that area or to fool CLS

into setting up a minimal display file. Poking

RAMTOP has no effect until one of these
two is executed.

N1 16390 MODE Specified K, L, F or G cursor.

N2 16391 PPC Line number of statement currently being

executed. Poking this has no lasting effect

except in the last line of the program.

SI 16393 VERSN 0 Identifies ZX81 BASIC in saved programs.

S2 16394 E_PPC Number of current line (with program

cursor).

SX2 16396 D FILE See Unit Q4.

S2 16398 DF_CC Address of PRINT position in display file.

Can be poked so that PRINT output is sent

elsewhere.

SX2 16400 VARS See Unit U2.

SN2 16402 DEST Address of variable in assignment.

SX2 16404 E LINE See Unit U2.

SX2 16406 CH ADD Address of the next character to be

interpreted: the character after the argument

of PEEK, or the NEWLINE (ENTER) at

the end of a POKE statement.

493

S2 16408 X_PTR Address of the character preceding the jgj

marker.

SX2

SX2

16410

16412

STKBOT

STKEND
See Unit U2.

SN1 16414 BERG Calculator's b register.

SN2 16415 MEM Address of area used for calculator's

memory. (Usually MEMBOT, but not

always.)

SI 16417 not used

SX1 16418 DF__SZ The number of lines (including one blank

line) in the lower part of the screen. See Unit

Q4.
S2 16419 S__TOP The number of the top program line in

automatic listings.

SN2 16421 LAST_K Shows which keys pressed.

SN1 16423 Debounce status of keyboard.

SN1 16424 MARGIN Number of blank lines above or below

picture: 55 in Britain, 31 in America.

SX2 16425 NXTLIN Address of next program line to be executed.

S2 16427 OLDPPC Line number to which COMT jumps.

SN1 16429 FLAGX Various flags.

SN2 16430 STRLEN Length of string type destination in

assignment.

SN2 16432 T_ADDR Address of next item in syntax table (very

unlikely to be useful).

S2 16434 SEED The seed for RND, This is the variable that

is set by RAND.

S2 16436 FRAMES Counts the frames displayed on the

television. Bit 15 is 1. Bits 0 to 14 are

decremented for each frame sent to the

television. This can be used for timing, but

PAUSE also uses it. PAUSE resets to 0 bit

15, and puts in bits 0 to 14 the length of the

pause. When these have been counted down

to zero, the pause stops. If the pause stops

because of a key depression, bit 15 is set to 1

again.

SI 16438 COORDS x-coordinate of last point PLOTted.

SI 16439 y-coordinate of last point PLOTted.

SI 16440 1 O

a

Less significant byte of address of next

position for LPRINT to print at (in

PRBUFF).

SX1 16441 S_POSN Column number for PRINT position.

SX1 16442 Line number for PRINT position.

SI 16443 CDFLAG Various flags. Bit 7 is on (1) during compute

and display mode.

S33 16444 PRBUFF Printer buffer (33rd character is

NEWLINE).

SN30 16477 MEMBOT Calculator memory area; used to store

numbers that cannot conveniently be put on

the calculator stack.

S2 16507 not used

System Variables -- Spectrum

Notes:

X The system may crash if the variable is poked.

N Poking the variable will have no lasting effect.

The number in column 1 is the number of bytes in the variable. For two bytes, the

first one is the less significant byte. To poke a value M to a two-byte variable at address

N use

POKE N(M - 256* INT(M/256))

POKE N+ 1, INT M/256

and to peek its value, use the expression

POKE N + 256*PEEK (N + 1)

Notes Address Name Contents

N8 23552 KSTATE Used in reading the keyboard.

N1 23560 LAST K Stores newly pressed key.

1 23561 REPDEL Time (in 50ths of a second - in 60ths of a

second in N. America) that a key must be

held down before it repeats. This starts off at

35, but you can POKE in other values.

1 23562 REPPER Delay (in 50ths of a second - in 60ths of a

second in America) between successive

repeats of a key held down: initially 5.

N2 23563 DEFADD Address of arguments of user-defined

function if one is being evaluated; otherwise

0.
Stores 2nd byte of colour controls entered

from keyboard.
N1 23565 K DATA

N2 23566 TVDATA Stores bytes of colour, AT and TAB controls

going to television.

X38 23568 STRMS Addresses of channels attached to streams.

2 23606 CHARS 256 less than address of character set (which

starts with space and carries on to the

copyright symbol). Normally in ROM, but

you can set up your own in RAM and make

CHARS point to it.

1 23608 RASP Length of warning buzz.

1 23609 PIP Length of keyboard click.

1 23610 ERR NR 1 less than the report code. Starts off at 255

(for - 1) so PEEK 23610 gives 255.

XI 23611 FLAGS Various flags to control the BASIC system.

XI 23612 TV FLAG Flags associated with the television.

X2 23613 ERR SP Address of item on machine stack to be used

as error return.

N2 23615 LIST SP Address of return address from automatic

listing.

N1 23617 MODE Specifies K, L, C, E or G cursor.

2 23618 NEWPPC Line to be jumped to.

1 23620 NSPPC Statement number in line to be jumped to.

Poking first NEWPPC and then NSPPC

forces a jump to a specified statement in a

line.

2 23621 PCC Line number of statement currently being

executed.

494
495

Notes Address Name Contents

1 23623 SUBPPG Number within line of statement being

executed.
1 23624 BORDCR Border colour * 8; also contains the attributes

normally used for the lower half of the

screen.
2 23625 E PPC Number of current line (with program

cursor).
X2 23627 VARS Address of variables.

N2 23629 DEST Address of variable in assignment.

X2 23631 CHANS Address of channel data.

X2 23633 CURCHL Address of information currently being used

for input and output.

X2 23635 PROG Address of BASIC program.

X2 23637 NXTLIN Address of next line of program.

X2 23639 DATADD Address of terminator of last DATA item.

X2 23641 E LINE Address of command being typed in.

2 23643 K CUR Address of cursor.

X2 23645 CH ADD Address of the next character to be

interpreted: the character after the argument

of PEEK, or the NEWLINE (ENTER) at

the end of a POKE statement.

2 23647 X PTR Address of the character after the Syntax

error marker.

X2 23649 WORKSP Address of temporary work space.

X2 23651 STKBOT Address of bottom of calculator stack.

X2 23653 STKEND Address of start of spare space.

m 23655 BREG Calculator’s b register.

N2 23656 MEM Address of area used for calculator’s

memory. (Usually MEMBOT, but not

always.)
1 23658 FLAGS2 More flags.

XI 23659 DF SZ The number of lines (including one blank

line) in the lower part of the screen.

2 23660 S TOP The number of the top program line in

automatic listings.

2 23662 OLDPPC Line number to which CONTINUE jumps.

1 23664 OSPCC Number within line of statement to which

CONTINUE jumps.

Ni 23665 FLAGX Various flags.

N2 23666 STRLEN Length of string type destination in

assignment.

N2 23668 T ADDR Address of next item in syntax table (very

unlikely to be useful).

2 23670 SEED The seed for RND. This is the variable that

is set by RANDOMIZE.
3 23672 FRAMES 3 byte (least significant first), frame counter.

Incremented every l/50th second (U.K.) or

l/60th second (U.S.).

2 23675 UDG Address of 1st user-defined graphic.

1 23677 COORDS x-coordinate of last point plotted.

1 23678 y-coordinate of last point plotted.

1 23679 P POSN 33-column number of printer position.

1 23680 PR CC Less significant byte of address of next

position for LPRINT to print at (in printer

buffer).

496

Notes Address Name Contents

1 23681 Not used.

2 23682 ECHO E 33-column number and 24-line number (in

lower half) of end of input buffer.

2 23684 DF CC Address in display file of PRINT position.

2 23686 DFCCL Like DF CC for lower part of screen.
XI 23688 S POSN 33-column number for PRINT position.
XI 23689 24-line number for PRINT position.

X2 23690 SPOSNL Like S POSN for lower part.
1 23692 SCR CT Counts scrolls: it is always 1 more than the

number of scrolls that will be done before
stopping with scroll?

1 23693 ATTR P Permanent current colours, etc. (as set up by
colour statements).

1 23694 MASK P Used for transparent colours, etc. Any bit

that is 1 shows that the corresponding

attribute bit is taken not from ATTR P, but

from what is already on the screen.

Nl 23695 ATTR T Temporary current colours, etc (as set up by

colour items).

Nl 23696 MASK T Like MASK P, but temporary.

1 23697 P FLAG More flags.

N30 23698 MEMBOT Calculator’s memory area; used to store

numbers that cannot conveniently be put on

the calculator stack.

2 23728 Not used.

2 23730 RAMTOP Address of last byte of BASIC system area.

2 23732 P-RAMT Address of last byte of physical RAM.

497

APPENDIX VI

PROGRAM LIBRARY

This appendix contains applications and utility programs and routines, and games.

Some of these have been referred to in the main text, Due to lack of space, the

programs are not fully documented.

1. Polar

Program produces a polar coordinate graph of the function entered as A$. This must be

an expression using A as the dependent variable. Since a common cause of failure of

the VAL function (giving the error code A) on the ZX81 is the exponentiation function,

this is noted and a way of avoiding it given. The angle increment (in radians) is entered

as DA. The appropriate scale factor can be experimented with. If you get a small

cramped plot (or even a single pixel), increase the scale factor. If the plot goes off the

screen, you are informed that the scale factor needs reducing (line 250). Polar

coordinate plots can be thought of as an X,Y plot with the X axis bent into a circle, and

the Y axis plot point defined as a distance R (radius) away from the centre point. Y is

then positioned by the COS and SIN functions in lines 190 and 200.

Spectrum: For use on the Spectrum change ** to f in line 30, and delete line 160.

Change line 70 to read 70 PAUSE 0. In lines 190 and 200 the centre point must be set

as plot co-ordinates 84, 82, with LET X = 84 + (R*COS A*SC) and LET

Y - 82 + (R*SIN A * SC). Line 210 must have the limits of X and Y set at 255 and 176

respectively. Line 270 should read PAUSE 0. The program will then run, but you can

also modify it to use the DEF FN and FN instructions: Define the function in line 50,

with a DEF FN a() = SIN A * 3 or whatever the derived function is, and use LET

R = FN a() in line 180. Change the instructions in line 40 to suit.

x© REH *'POLRR"
3® PRINT TRB 3;"&POLRR

TRB s; "
3© PRINT / , "PLOT ROUTIMS FOR P

OLRR" , ** COORDDINRTES „ ENTER FUMC.TX
ON TO'* . ”0E PLOTTED WITHOUT USB O
F , '* (RRISED TO POUBRS FUNCTXO
N.USEM , "SXN&SJmSXN/MOT 3
OR** , "EXRMPLE » USE R FOR BMSLE, " , "
YOU MUST BLSO ENTER SC-BLE " "FRO-
TOR RND RNGLE INCREMENT - "

4-© PRINT / /'ENTER EXPRESSION 1
O BE PLOTTED*'

5© INPUT
©@ PRINT "ENTER RNOLE XMCREMEN

7© INPUT DR
3© PRINT "ENTER SCRLE FRCTOR"
90 INPUT SC

10© CL5
109 REM *PRXNT RXES RND PLOT

INFORMATION#
11© FOR F =1 TO 3©
12© PRINT AT 11,F;"."
130 PRINT RT F, 10; “ .* **
14.® NEXT F
150 PRINT RT 0,12;R$;BT 1,"S

,F, =*'j SC;TRB 13;"ANGLE XNC,=";DR
1S0 FAST
169 REM GROUND THE OIRCLB.STBP

RNGLE*
17© FOR A”0 TO a^PI STEP DR
179 REM *EUBLURTE FUNCTION^
13© LET R=UBL R$
139 REM #NEXT LINES SET X , V

CONUERTED TO POLRR(COS BHD SXH*
COORDXNATES,TIMES SCRLE FACTOR,
RND SET WITH CENTRE RT

190 LET X=20H’P#COS A*SCA
300 LET Y’=20* (R#SXN A*SOJt
210 IF X>©0 OR X<0 OR V4-3 OR Y

iO THEN GOTO 250
22© PLOT X,Y

499

S3© NEXT ft
S4.0 GOTO 290
SS0 PRINT RT 19/0;"OUT OF PLOT

RRNGE. REDUCE SCRLE" / "FRCTOR * "

BRSNEURSNF »PRESS ^ KEY EHT

27© PRUSE " 4-E4-
280 GOTO 9©
290 REM ^FINISH*

SIM ft *3.1
5 » F» =10
BMSLE INC.».0B

2. Home Accounts

Program allows household expenses for each day for a month to be entered under

various headings, which may of course be changed to suit your needs. Income is

entered, and credits may also be input under any heading. After entries have been

made, a statement of account is derived, which may be printed out. A breakdown of

account by heading can also be printed, and the program and data saved to tape so that

future entries may be added.

The data is stored in string arrays, and these could be increased up to the limits of

memory if a longer period were to be catered for. The program is menu-driven, and all

inputs allow the user to check for errors and re-enter if necessary.

5 REM "HOME ACCOUNTS"
10 REM ^INITIALISATION*
20 LET TOTAL-O
30 LET 1=1
40 LET C=0
50 LET Z$="END
61 REM *ARRAY DECLARATION*
62 DIM D*(31i6>
63 DIM I$<31>U
65 DIM A<31>
66 DIM A$(10)
67 DIM C$<6,1)
68 DIM K$<6,15)
69 GOSUB 170
70 REM *MAIN MENU*
73 CL8
75 PRINT AT 0,8?"HOME ACCOUNTS

77 PRINT AT 1,8?**---— -

80 PRINT AT 4,10? "*MAIN MENU*"
81 PRINT AT 5,11?"----

500

82 PRINT AT 7,2? "A"? AT 7,10?"
TO ADD AN ENTRY"

83 PRINT AT 9,2?"S"? AT 9,10?"
FOR ACCOUNT STATEMENT"

84 PRINT AT 11,2?"C"? AT 11,10
?"FOR CODE BREAKDOWN"

85 PRINT AT 13,2?"X"? AT 13,10
?"TO EXIT"

86 PRINT AT 15,8?"OPTION ?"
87 INPUT Q$
88 IF Q$="A" THEN GOTO 310
89 IF Q$^"S" THEN GOTO 610
90 IF Q$S"C" THEN GOTO 805

100 IF Q$=*"X" THEN STOP
120 PRINT AT 15,8?"UNKNOWN OPTI

GNs "? Q*
130 PAUSE 100
140 PRINT AT 15,8?"

n

150 GOTO 85

160 REM **EXPENSE CODE **
^INITIALISATION **

170 LET C*<1)="G"
180 LET K$<1)="GR0CERY"
190 LET C$(2)="P"
200 LET K$<2> ="PETR0L"
210 LET C*(3)="C"
215 LET K$(3)«"CAR REPAIRS"
220 LET C$<4)="R"
230 LET K$(4)="RATES"
240 LET C$(5)="M"
250 LET K$<5)«"MISCELLANEOUS"
260 LET C$(6)="I"
270 LET 6)-“INCOME"
280 RETURN

300 REM *INPUTTINO DATA*
310 CLS
320 PRINT AT 0,8?"HOME ACCOUNTS

330 PRINT AT 1,8?"---- --------
it

350 PRINT AT 5,5?"
360 PRINT AT 4,2?"ENTER DATE (E

G„ 25 NOV, OR "" END "" TO
FINISH)"

370 INPUT D$(I)
380 IF D$(I)THEN GOTO 370
387 PRINT AT 4,2?"

388 IF D$(I)=Z$ THEN GOTO 570
390 PRINT AT 5,5?"DATE! "?D$(I)
392 PRINT AT 10,5?"CORRECT CY/N

)?"?
394 INPUT Q$
395 IF Q$="N" THEN GOTO 350
396 IF Q$ <> "Y" THEN GOTO 394
398 PRINT AT 10,5?"

ii

399 PRINT AT 11,5?"

501

410 GOSUB 1000
420 PRINT AT 16*5?"EXPENSE CODE

?«$

430 INPUT I$(I)
431 IF I$(I>=“" THEN GOTO 430
434 GOSUB 2000
436 FOR J=1 TO 6
437 IF I$(I)*C$<J) THEN GOTO 44

2
438 NEXT J
439 PRINT AT 7*5?"UNKNOWN EXPEN

SE CODE? "?!$(!)
440 PAUSE 100
441 GOTO 410

442 PRINT AT 7*5?"EXPENSE CODE?
M? K$(d)
444 PRINT AT 11*5?“CORRECT <Y/N

)?"
446 INPUT Q$
447 PRINT AT 11*5?"

ii

448 IF Q$="N" THEN GOTO 410
449 IF Q$ <> "Y“ THEN GOTO 444
460 PRINT AT 13*5?"

ii

470 PRINT AT 9*5?'‘AMOUNT <- FOR
EXPENSE) ?"
480 INPUT A$
485 IF A$="" THEN GOTO 480
487 PRINT AT 9*5?“

ii

490 PRINT AT 9*5?"AMOUNTS "?A$
500 PRINT AT 13*5?"CORRECT (Y/N

)?"?
510 INPUT Q$
520 IF Q$="N" THEN GOTO 460
530 IF Q$ <> “Y" THEN GOTO 510
532 PRINT AT 13*5?"

h

534 PRINT AT 9*5?“
m

536 PRINT AT 7*5?“
ii

538 LET A<I)= VAL A$
540 LET 1 = 14-1
550 LET C=C+1
560 GOTO 350

570 PRINT AT 10*3?“DO YOU WISH
TO SAVE THESE"? AT 11 *2?“ENTRIES

(Y/N) ?"
575 INPUT Q$
580 IF Q$="N" THEN GOTO 73
585 IF <> “Y“ THEN GOTO 575
590 PRINT AT 10,2?“S£T UP CASSE

TTE RECORDER* WHEN READY PRESS A
NY KEY"

595 IF INKEY$ =““ THEN GOTO 595
598 SAVE “HOME ACCOUNTS"
599 GOTO 73

600 REM ^STATEMENT OF ACCOUNT#

610 CLS
620 PRINT TAB 5?"STATEMENT OF A

CCOUNT"
630 PRINT TAB 5?"- — ---— -- --
__ii

640 PRINT
650 PRINT "DATE"? TAB 8?"TYPE"?
TAB 15?"CR"? TAB 25?"DB"
660 PRINT "-"? TAB 8?"-"?
TAB 15?""-"? TAB 25?
670 FOR 1=1 TO C
680 PRINT D$< I) ? TAB 8? I$CD?
690 IF A(I)>0 THEN GOTO 720
700 PRINT TAB 25? ABS A(I)
710 GOTO 730

720 PRINT TAB 15?All)
730 LET TOTAL=TOTAL+A CI)
740 PRINT
750 NEXT I
753 PRINT TAB 20?"."
755 PRINT "BALANCE"? TAB 20?TOT

AL
766 PRINT AT 21*2? "COPY TO PRIN

TER (Y/N) ?"
767 INPUT Q$
768 IF Q$="N" THEN GOTO 73
769 IF Q$ <> "Y" THEN GOTO 767
770 PRINT AT 21*2?"SET UP PRINT

ER AND PRESS A KEY"
773 IF INKEY$ ="" THEN GOTO 773
775 PRINT AT 21*2?"

ii

780 COPY
790 GOTO 73

800 REM ##BREAKDGWN OF ##
**ACCOUNT BY CODE

805 CLS
810 PRINT "STATEMENT OF ACCOUNT
BY CODE"
820 PRINT --— — -
____ n

830 PRINT "CODE"? TAB 15?"TOTAL
II

840 PRINT
850 LET J=1
855 LET TOTALED
860 FOR 1=1 TO C
870 IF I$(I)=C$CJ) THEN LET TOT

AL=TOTAL+A<I)
880 NEXT I
890 PRINT K$<U)? TAB 15?TOTAL
900 LET J=J+1
910 IF J <= 6 THEN GOTO 855
926 PRINT AT 21*2?"COPY TO PRIN

TER (Y/N) ?"
927 INPUT Q$
928 IF Q$="N" THEN GOTO 73
929 IF 0$ <> "Y" THEN GOTO 927
930 PRINT AT 21*2?"SET UP PRINT

ER AND PRESS A KEY"
940 IF INKEY$ ="" THEN GOTO 940

502 503

950 PRINT AT 21?2?"
M

960 COPY
990 GOTO 73

1000 REM a##*#*#####**####*##*
^EXPENSE CODE MENU*#
##SUBROUTINE **
######*###**#*##*##

1020 PRINT AT 7?5?"^EXPENSE CODE
MENU*

1030 PRINT AT 8?5?" --— — —
_ „ _ it

1050 PRINT AT 9?5?"G“? AT 9?15? H
GROCERYM
1060 PRINT AT 10?5?"P"f AT 10?15
f“PETROL"
1070 PRINT AT 11,3?"C"? AT 11?15
?“CAR REPAIRS"
1080 PRINT AT 12?5?"R"? AT 12?15
?“RATES"
1090 PRINT AT 13?5?"M"? AT 13?15
?“MISCELLANEOUS"
1100 PRINT AT 14,5?“I"? AT 14?15
?"INCOME"
1110 RETURN

2000 PRINT AT 16?5?“
; II

2010 PRINT AT 14?5?" "? AT 14? 15
• H H

2020 PRINT AT 13?5?“ "? AT 13? 15
• it ti

2030 PRINT AT 12,5;" AT 12,15
a II II

2040 PRINT AT 11?5?" "7 AT 11?15
9 II II

2050 PRINT AT 10?5?" "? AT 10?15
>n ii

2060 PRINT AT 9?5?" "7 AT 9?15?"
n

2070 PRINT AT 8?5?"
it

2080 PRINT AT 7?5?"
ii

2090 RETURN

3. Resval

Program derives the preferred resistor value (i.e. the closest standard resistance) from

inputs of the voltage and current required in a circuit. From these inputs (in volts and

amps) the actual resistance is calculatead by Ohms Law (R = V/I). This value, rounded

to two significant figures, is then used to calculate the value L, 10 to the power L being

the multiplier for the resistor value. The values stored in the array X(13), entered as

shown in the first program, are then compared with the calculated resistance. The first

value stored in the array which gives a value greater than R is then used to print out the

preferred value for the component. The current and power usifig a resistor of this value

are then printed. The user may then choose to run the calculation again with different

inputs until the best solution is achieved. This illustrates the basic principle of

computer-aided design (CAD) of circuits, where the derived theoretical values are

modified to suit the actual components available.

504

The array creation program and data values (of resistors with ±10% tolerance) are

given below. This program is then edited out, and RESVAL entered. Alternatives to

storing the data in an array would be to assign each value of the array X with a LET

statement, or, if using a Spectrum, to place the values in a DATA statement. Both

these methods would eliminate the problem of avoiding the use of RUN.

Spectrum: Change ** to 4 in lines 220, 240 and 270.

Change line 340 to read 340 SAVE “RESVAL” LINE 10

Delete line 350
As noted, the program could be modified to use the DATA and READ

statements. Insert a line 340 with the data as given below, and insert

215 READ X. Change X(N) to X in lines 220 and 240.

1© REM * ^-RESISTOR VALUES INTO
RRRfiY^#

20 REM ffLIMES EDITED OUT RFTE
R ENTRY OF VALUES**

3© REM **THEN RESVAL PROGRAM E
NTERED* *

4-0 DIH Xtl33
S© LPRINT "ARRAY VALUE1*
6© LPRINT
70 FOR L=1 TO
8© LPRINT 'Xr
0,04 TMPI IT X tL_)

3.3
; l; ” 1 ";

7; X OD
NEXT L

ARRAY VALUE

X (1)
x
X(3)
X (4)
X L5>
x ce>
x r?)
X IB)
X (9)
X (10)
X (ID
X < 1HS)
X (13)

10
IS
IS
1©
22
27
33
39
4-7
SB
68
82
i©@

lO REM *RESVAL*
20 PRINT “ RESVAL **
3© PRINT
4-0 PRINT "PROGRAM DERIVES PREF

ERRED UALUE";TRB 0; “OF RESISTOR
FROM INPUT";TRB ©;"VOLTAGE AND C
URRENT VALUES"

S© PRINT
60 PRINT "PREFERRED VALUES '5TO

RED IN ";TAB O;"ARRAY.DO NOT RUN
PROGRAM.USE";TAB 0;“GOTO lOO."

70 PRINT "SAVE WITH GOTO 34-0,"
80 PAUSE 8©0
90 CL 3

1©0 PRINT "VOLTAGE T";
11© INPUT V
120 PRINT TAB 12;V;" VOLTS"
130 PRINT
14© PRINT ’‘CURRENT
ISO INPUT I
160 PRINT TAB 12;I;" AMPS"
17© LET R=INT /100
180 PRINT
19© PRINT "ACTUAL RESISTANCE ";

R,; " OHM"
20© LET L = INT <LN R/2.303)-'!
21© FOR N ~1 TO 13
220 IF R <—X (N > *10 * *L THEN GOTO

24©
230 NEXT N
240 LET X=X(N)*1©**L
25© PRINT "PREFERRED RESISTOR:

";X;" OHM"
260 PRINT "GIVES CURRENT "; INT

(U*i0ei/X) ri©0; " RHP"

505

270 PRINT "RND "; INT (U**S*100Y
X)sX00;" WRTTS"

230 PRINT
290 PRINT "AGAIN? (Y/N) "
3©0 INPUT Q$
310 IF ©$="N" THEN STOP
320 CL5
3-30 GOTO 10©
34-0 5RUE '’RE5Uf@M
350 GOTO 10

4. Matmulfc

Program multiplies two square matrices. A two-dimensional matrix is stored as a two-

dimensional array, with the size input. Matrix multiplication requires the number of

columns in one matrix to be equal to the number of rows in the other. The matrices are

set up as square arrays of equal size in this program, and nonsquare mtrices may be

multiplied by entering 0 for the elements of a row or column which is unused. Users

familiar with matrix arithmetic will be able to derive from this program the routines to

handle other matrix operations. The method involves nested FOR-NEXT loops, in

conjunction with three arrays in this program, the third array holding the resultant
matrix.

Other points to be noted are the input and error routines. The input routine prompts

for inputs by row and column number, and when all elements have been entered the

error check subroutine is called, so that the user can check the whole matrix at once.

This avoids the possibility of confusion over row/column numbers.

5 REM "MATMULT"
6 REM ^BETTER IN FAST*

10 PRINT "2D MATRIX MULTIPLIER

T ION** S****************
20 PRINT AT 3,0; "MULTIPLIES

URRE MATRICES*AT B/Bj'TO USE F
OR NONSOUARE MATRICES ,"ENTER HA
IRIX SIZE TO ACCOMODATE","AND EH
TER ZEROES * E * G TO MULTIPLY", ," fI

a 31 BY" , M (4.) " " (S> "
30 PRINT "USE 3 AS MATRIX 3IZE

.ENTERING"/'! COLUMN AND X ROW O
NLY , REST © *" , , ,"ENTER MATRICES R
OU BY ROW-"

4.0 LET A$“"

50 PAUSE 20©
SO PRINT AT 21 , ©; " tf CENTER HATH

IX 3IZE4*"
"T 53 INPUT 3
3© REM ^DIMENSION 1ST , 2ND AMD

RESULT MATRICES#
3© DIM RC5/SJ

100 DIM B(S,S)
110 DIM C<5,3)
120 CLS
130 PRINT "ENTER MATRIX I",,"EH

TER © FOR UNUSED ELEMENTS"
14-0 FOR F = 1 TO S
ISO FOR N = 1 TO S
ISO PRINT AT 21,0; "ROW ";F; " CO

lumn ";n;" ?"
17© INPUT A CF,N)
ISO PRINT AT F*3 ,N*6-©;ft t‘F ,t'iS
19© NEXT N
200 NEXT F
210 REM #M IDENTIFIES MATRIX FO

R SUBROUTINES
220 LET M=1
230 GOSUB 500
24.2 CLS
2S0 PRINT "MATRIX 2"
250 FOR F=1 TO S
270 FOR N=1 TO S
2SO PRINT AT 21,0;"ROW ";F;" CO

LUMN n;" 7"
290 INPUT BCF,N3
30© PRINT AT F^3/N^6“6; © t‘F,N.t
310 NEXT N
320 NEXT F
33© LET M ~2

506

34.0 GOSUB SO©
35© CLS
36© PRINT "MATRIX X * MATRIX 2

GXUES:
*370 FOR F-l TO 5
360 FOR N = 1 TO 5
39© FOR TO 5
4.00 LET C <F, N) =C (F,N) <F, L) && <

L N)
410 LET C(F,N)^INT (C(F,N)^l£5t

-H:/IE5
420 PRINT AT F #3 , N *S -©; C <F .. H>
43© NEXT L
44© NEXT N
43© NEXT F
46© PRINT AT 21,0;"INPUT C(COPY

) , R(RUN) OR E(END)"
47© INPUT Z$
46© IF Z$^''C" THEN COPY
49© IF Z$s"R" THEN RUN

495 GOTO'700
499 REM TERROR SUBROUTINE*
50© PRINT AT 21,0;ft*
51© PRINT AT 20,0;"ARE ALL ENTR

IE-3 CGRECT 7 (Y OR N) "
520 INPUT B *
53© IF B $- *‘Y" THEN RETURN
54© PRINT AT 21,0; “HOU MANY INC¬

ORRECT ENTRIES?"
55© INPUT EN
56© FOR F-l TO EN
57© PRINT AT 20,0; ft*; AT 21,0; ft*

;ht 21,0;"ERROR ";F;"; ROW 7"
560 INPUT R
590 PRINT AT 21,7;"COLUMN 7"
500 INPUT C
510 PRINT AT 21,0; A*; AT 21,0; "£

HTER CORRECT NUMBER
520 INPUT N
S3© IF M~1 THEN LET ft(R,C>=N
64© IF M=2 THEN LET BtR,C>=N
55© PRINT AT R*3,C*6-S; "
hi R *3, c *s -6; N
55© NEXT F
670 PRINT AT 21,0;A &
560 GOTO 510
70© REM *END#

ENTER MATRIX 1
ENTER 0 FOR UNUSED ELEMENTS

1 2 3

© © 0

0 0 ©

MATRIX 2

3 O 4

3 © 5

3 0 ©

MATRIX 1 * MATRIX 2 CIUE'5; -

© © 32

© © ©

© © ©

INPUT C (COPY) ,R(RUN.) OR E (EMD.t

507

5. Fruit

Program simulates a fruit machine. The program allows you to continue playing until

your money runs out (which it will eventually) and you can then “borrow” more.

Points to be noted in the program are the overprinting of a string to simulate the

spinning of the wheels (lines 200 to 230), and the logic used to check wins and amount

(if any) won, in lines 250 and 260. The program loops back from line 290 to line 140

unless the money has all gone.

Spectrum: Change line 60 to read 60 PAUSE 0.

10 REM "FRUIT"

30 PRINT .« YOU HAUE £2 TO GAM
BLE/'/'ERCH ROLL COSTS 1© FENCE.

40 PRINT " PRYOUT5: 2 THE SAHE
PAYS 10Pm;ThB 8;"3 THE SRHE PRY

3 40F”.;TAB 8j “EXCEPT F
AYS £1"

S© PRINT , /'PRESS R KEY TO 5TR
RT "

60 IF INKEY $ = ” ” THEN GOTO 60
70 CL 5
74 REM
75 REM #*INITIALISE,'PRINT**
76 REM

11 ti? h**"

100 PRINT **
110 PRINT RT 3j0.: "YOU HRUE 'VC*
120 PRINT RT 6 . l£ ; "WKSBBmm" ; TAB
12.; "■£■€■£■”; TAB
130 PRINT RT 19.,©.: "PRESS S TO S

PIN”
140 IF INKBY $ <>”5” THEN GOTO 14

0
141 REM
142 REM **SET WIN LINE##
143 REM
145 LET B*«"M
IS® FOR F 5*1 TO 3
160 LET R = I NT (R MDrfSi +1
170 LET B$=B$ + "11"+A$ (R.t
160 NEXT F
184 REM

135 REM **SP1N WHEELS**
186 REM

£88 =

210 PRINT RT 9., 12,;F^(X TO 6)
§20 LET; F*»F*<3 TO >+F*(l TO S>
230 NEXT F
234 REM
235 REM #*PRINT WIN LINE**
236 REM
240 PRINT RT
245 REM **CHECK WlN5**
25© LET W= <B$ (2) =B|i (4) > + (B* (S'? =

(6))+(B$(4)(6)f
254 REM
255 REM AMOUNT WON * *
256 REM
260 LET C = (- 10 AND W = ± H(,40 AN

0 Ul=3) +(1.0 AND W"3 AND B*

270 LET C$=C* (1) +5TR$ (URL C* (£
TO)+C-.10)
274 REM
275 REM **CHECK IF SOLDENT * *
276 REM
280 PRINT RT 3., 9;C$
290 IF URL (2 TO) > >. 10 THEN

GOTO 140
294 REM
295 REM #*MONEY SPENT**
296 REM
300 PRINT RT 3,©.;”*YOU ARE BROK

E.* "> TRB 0; "BORROW £2 T(Y OR Hi

310 INPUT M $
320 CLS
330 IF M $ ~"Y" THEN GOTO 6©
340 PRINT "BETTER LUCK NEXT TXH

E”
999 STOP

508

6. Lissajous

A program to produce the intricate, interesting and delightful patterns, named after the

mathematician who discovered the equation that produces them. You merely enter the

values of A, B and C in response to the prompts and watch the patterns develop.

Spectrum users can generate more complex patterns than ZX81 users, because of the

higher resolution PLOT screen.

Spectrum: Change line 80 to read 80 FOR F - 0 TO 200 STEP 2. This defines the

number of points to be plotted. You can experiment with different values for STEP if

you want more or fewer points plotted. Line 90 needs the two 30s changing to 120, and

line 100 the two 20s changing to 80. A and B can both be input with values up to about

10 on the Spectrum, so change the Input prompts to suit.

1 REM *LIS3BJOUS*
2 REM PLOTS LISSAJOUS PATTERN

3 REM A IS RELATIVE FREQUENCY
Y,B IS REL. FREOa X,C IS Y PHRS

E OF PI-
10 PRINT "INPUT A VINTEGER 1 T

O 5) ”
2® INPUT A
3© PRINT "INPUT B <INTEGER 1 T

0 5)"
4© INPUT B

3 TO 8?"NT ,ZNPUT C I ANY NUMBER

60 INPUT C
70 CLS
8© FOR F=0 TO 20©

0®?0 LET y=30+3©*SIN (C+R*PI*F.,*i

j 100 LET X =20+ 20* SIN t'B*PX*Fy 10©

110 PLOT Y/X
120 NEXT F

7. Line

This program gives the computer the capacity to draw a line between specified plot co¬

ordinates. The Spectrum possesses a LINE instruction that does this automatically, but

Spectrum users may be interested in the method, which is the way the LINE instruction

automatically calculates the points to plot. The program will run on the Spectrum if

line 85 is deleted. As it stands, the program prompts for two sets of X, Y points, giving

an error message if the points are out of range. Lines 110 and 120 calculate the X and Y

axis differences between the specified points. Line 130 defines the variable A as the

greater of these. DX and DY are the increments added to the values of X(l) and Y(l)

509

for plotting. In the loop (F = 1 to ABS A, since A may be negative) DX and DY are

decremented or incremented (as X and Y are positive or negative) by the distance to be

covered between points, divided by the number of steps needed. The program will

accept further inputs as required, but does not provide input prompts (lines 210 to
280).

5 REM “LINE"
I© REM DRAWS LINE BETWEEN POXN

T f (X (1) jiY (1))RND POINT
))

a© DIM X (SO
as dim v<a>
3© FOR Fal TO a
4.© PRINT “COORDINATES POINT %v.i

F
5© PRINT ,,“X UALUE T“
6© INPUT XtF)
70 PRINT ,,“Y URLUE T“
©0 INPUT YCF)
85 XF X (F) >53 OR Y(F) !-43 THEN

PRINT RUN PROGRAM AGAIN

i©0 CLS
li© LET X = X(2) -X(l)
ia© LET Y™Y(2)-Y(X)
13© LET A~ (X RND RBS XJ--RB5 T i +

(Y RND RBS XcABS Y)
14-© LET DX=®
15© LET DY =©
IS© FOR Fsl TO ABS A
17© PLOT DX-fX < 1) *DY +Y i l‘l
18© LET DX =DX * X /BBS A
19® LET DYsDY*Y/R©5 A
30© NEXT F
21® REM *FOR OTHER LINES*
22© REM *****************
23© INPUT XC1)
24© INPUT Yd)
26© INPUT X<2)
27© INPUT Y(2)
28© GOTO 11©

8, Reverse

The computer jumbles up a sequence of 9 numbers, and prints these (subroutine line

500) after giving the instructions, by calling subroutine 1000. After each input by the

player the subroutine at line 300 is called to print the altered sequence and check if the

ordering is complete. If the sequence is correct, control is passed to line 2000 for the end
routine, which gives the option of playing again.

10 REM "REUERSE"
20 PRINT TAB 1©;“*REUERSE*“
30 GOSUB 100©
4© CLS
45 DIM A (9)
50 PRINT TRB 1© ; *' *REUERSE * "
60 PRINT RT 5,5;

510

7© GOSUB 5©©
8® LET GOESs0
9© PRINT RT IS,©;“INPUT NUMBER

TO REUERSE 7“
100 INPUT R
110 IF R <1 OR R>9 THEN GOTO 10©
120 GOSUB 300
13© REM **LOOP NEXT GO**
140 GOTO 10©
IB® REM *********************
16© REM
3®0 REh **REUERSE RND CHECK**
310 REM **SE0UHNCE **
315 REH
32© FOR F=1 TO XNT (R/2J

LET T“R tf)
84© LET R(F) =R CR-F + D
35© LET R(R-F-M) sT
36© NEXT F
37® LET CORRECT =©
3O0 print RT 5,5;
39© FOR F“X TO 9
4@© PRINT R (F) ;”
41© IF R(F)^F THEN LET CORRECT

^CORRECT 4-1
420 NEXT F
43© LET GOES =GOES*1
44© IF CORRECT”9 THEN GOTO 20©@
45® RETURN
46© REM **********************
47© REM
5©0 REM **SET SEQUENCE**
5©5 REM
SI© LET fl(l)=INT (RND*©)*1
52© FOR F=2 TO 9
530 LET R(F)=INT CRND*9)+1
54© FOR N=F — 1 TO 1 STEP -1
550 IF R(F)=fl(N) THEN GOTO 530
560 NEXT N
57© NEXT F
580 FOR F=1 TO 9
590 PRINT R(F);“ “;
60© NEXT F
©1© RETURN
©20 REM ***************
©30 REM

1000 REM * *INSTRUCTIONS * *
1010 REM
102© PRINT ,,“COMPUTER GENERATES

JUMBLED","SEQUENCE OF DIGITS 1
TO 9„"
103© PRINT “YOU MUST INPUT A NUM
BER 1 TO 9,"
1040 PRINT “RND THIS NUMBER OF D
XGITS,“STARTING FROM THE LEFTM
OST,“,“UILL REUER5EnYOU MUST GET

THE"
105© PRINT “DIGITS IN ORDER LEFT

TO RIGHT
3.86© PRINT , /’PRESS A KEY1 TO STR
RT „ “
1070 PRINT
LAY UHILE”

.•there WILL BE A DE
“SEQUENCE IS CREATED,,

108© PAUSE 4©@®@
109© RETURN
1.100 REM ********************
111© REM
2000 REM **END ROUTINE**

PRINT RT 20,0;"**SUCCESS IN
a? ^GOES; ” GOES?*1'1 , "ANOTHER GOT <Y

OR N) “

till THEN GOTO 2050
2040 GOTO 4©

ilil PRINT -PLOY AGAIN SOMETIME.

RYE.

9. Tools

The program shows the principle of a programmer’s toolkit program containing useful

program modules. You should add to this basic version any further subroutines or

modules you want to have available. The inclusion of the BLOCKDEL program makes

511

editing out any modules not required for a specific program very easy. You may wish to

add, for example, a round/justify subroutine for numbers, or a sorting subroutine.

Note the mnemonic for the error subroutine line number. When you add modules,

however, use variable names that you are unlikely to use in the program you are

developing. Load the program before starting a program on the ZX81.

Spectrum: For the Block delete module see BLOCKDEL. For Renumber module and

Memory left see Section U of the text. Remember you can use MERGE to enter this

program at any point (hence the high line numbers).

1 REM "TOOLS"
2 REM ** ILLUSTRATES TOOLKIT#-*
3 REM **LGRD BEFORE START * *

* *INPUTTIMG PROGRAMS*
4 REM **GOSUB ERROR FOR ERROR

**ME3SAGE **
5 REM **GOTO 95©© FOR BLOCK**

* ^DELETE **
6 REM **GOTG 970® FOR PENUH*
7 REM **GQTQ 0450 FOR MEMORY

*SLEPT
© REM **ADD YOUR DUN ROUTINES'

3 LET ERROR =94-00

9400 REM * TERROR MESSAGE SUS* *
9410 REM ** * *** * * * * ********* *
942© PRINT TAB 7> " 3-if * INPUT ERROR
" TAB 7; M**************"
9430 PAUSE 12©
944© RETURN
9450 REM **MEMORY LEFT **
9450 REM ********************
347© CLS
948© PRINT "MEMORY LEFT =";PEEK I
63S6+aS6»PEEK 16387-PEEK 15412-2
5S*PEEK 16413; " APPROX *"
3490 STOP
9500 REM **BLQCK DELETE ft *
3505 REM ****************
MX© PRINT "FIRST LINE TO DELETE

952© INPUT ST

Ti§?"PRINT "LRST LINE TO BE DELE

9540 INPUT END
3550 LET RAM=16509
956© LET LNUM=aS©#PEEK RAM*PEEK
(RRM + 1)
9570 IF LNUM=ST THEN LET LRAH-RA
M+2
9580 LET LLEN=PEEK t‘RAH+2.l +2SS*P
EEK {RRM +3)
959® IF LNUM =END THEN GOTO 9620
9500 LET RAM=RRM44 +LLEM
9610 GOTO 9560
953© LET LLENaR«H+LLEtH£-LRAH
3640 POKE LRAM+1,INT VLLEN.«*2SSA
965© POKE LRAM,LLEN-256*PEEK VLR
BM4-1)
9660 PRINT ‘'INPUT F XRST t N.*‘L TO D
ELETE BLOCK"
3670 STOP
970© REM **RENUMBER** PSd ************
9720 LET RRM=16509
973© LET LINE=1©
974© LET STEP = 1©
975© POKE RRM,INT (LINE/256;
976© POKE RRM + 1, (LINE-256*PSEK R

9770 LET RRM=RRM+1
978© IF PEEK RRM -< >116 THEN GOTO

3770
3790 LET RRH=RRM+1
3800 IF 256*PEEK RRM+PEEK VRAM4Z
)=900© THEN GOTO 983©
3810 LET LINE =LINE+ STEP
382© GOTO 975®
983© PRINT "RENUMBERED,NOU DO GO
SUB,GOTO","LINES,"
9340 STOP

512

10. Blockdel

Program enables blocks of program lines to be deleted by a single line entry after the

line numbers of the first and last lines of the block (ST and END) to be deleted have

been entered (the program can also delete itself!). This is done by taking (line 9550) the

start address of the program storage area (RAM) then finding (line 9560) the line

number of the first line (LNUM). If this is the line number of the start line, the address

of the first byte of the line length storage bytes (- RAM -h 2) is stored as LRAM (line

9570). The line length bytes are then PEEKed (line 9580) to find the line length in bytes

(LLEN), before the line number is checked in line 9590 to see if it is the last line to be

deleted. If it is, control is passed to line 9620. If it is not, RAM is incremented by the

line length and four bytes for the program length and line number bytes, to get the

address of the start of the next line stored in the memory, and the process is repeated.

When the end line number has been located and control passes to 9620, the line length

variable LLEN is made equal to the number of bytes between the first and last lines for

deletion (this is why LLEN was found before checking if the current line was the last of

the block) by setting RAM to be RAM 4- LLEN, i.e. the address of the end byte of the

last line to be deleted. This value, less the address of the line length byte of the first line

(stored as LRAM), plus 2 for the program line number bytes of the last line gives the

number of bytes to be inserted by the POKEs of lines 9630 and 9640 as the new line

length of the first line requiring deletion. The computer now thinks that the lines for

deletion are all one huge line, and keying in this line number and pressing NEWLINE

(ENTER) will delete the whole block. The program should be loaded for use on a ZX81

from tape before you start working on a program. Spectrum users can use MERGE.

Spectrum: Line 9550 (giving the start of the program area) must be changed to read:

9550 LET RAM « PEEK 23635 + 256*PEEK 23636

10
350©
3505
951©

REM “BLOCKDEL"
REM **BLOCK DELETE*#
REM *******###**##*#
PRINT "FIRST LINE TO DELETE

952© INPUT
9530 PRINT "LRST LINE TO BE DELE

354© INPUT END
3550 LET RRM = 16S®9
9560 LET LNUM=256*PEEK RRM*PEEK

(RAM + 1)
957© XF LNUM =ST THEN LET LRRM =RB
M + 2
358® LET LLEN=PEEK VRAM*29 #256 #F*
EEK tRAH + 3.'
359© XF LHUM=EMD THEN GOTO 9620
96©0 LET RAM=RBM+4+LL£M
3610 GOTO 9560
9620 LET LLEN =RflM + LLEN +2-LRAM
963® POKE L.RAH + 1,INT VLLEM/2SSA
9640 POKE LRRM,LLEN-2S6*PEEK VLP
RM + i)
965© PRINT "INPUT FIRST,N/L TO C
ELETE BLOCK"
966© STOP

10 REM “BLOCKDEL"
9500 REM *#BLOCK DELETE#*
9505 REM ######*###**###*
9510 PRINT "FIRST LINE TO DELETE

9520 INPUT ST
9530 PRINT "LAST LINE TO BE DELE
TED?"
9540 INPUT END
9550 LET RAM=16509

513

9560 LET LNUM-256# PEEK RAM+ PEE
K CRAM+l)
9570 IF LNUM=ST THEN LET LRAM-RA
M+2
9580 LET LLEN- PEEK <RAM+2>+256*

PEEK CRAM+3)
9590 IF LNUM-END THEN GOTO 9620
9600 LET RAM=RAM+4+LLEN
9610 GOTO 9560

9630 LET LLEN=RAM+LLEN+2-LRAM
9640 POKE LRAM+li INT O.LEN/2S6)
9650 POKE LRAMiLLEN-256# PEEK <L
RAM+1)
9660 PRINT "INPUT FIRST?N/L TO D
ELETE BLOCK"
9670 STOP

11. Coder

The computer chooses a four digit code sequence comprised of the digits 1 to 6. You

input your guess for this code sequence. The computer prints your guess, checks for the

number of digits in the correct place which correspond to the code, storing this as AST

(for asterisk), and then checks through the remaining digits for numbers which occur in

the code sequence, but are not in the correct place (DOLLAR). These values are then

printed. This information helps you to refine your next guess. 15 goes are allowed, and

if you haven’t got the code in 15 tries, it is printed out for you. The program is

structured with a sequence of calls to subroutines. Note that the code can include

repeated digits, and analyse the checking procedures to see how this is dealt with.

REM "CODER"
GOSUB 100©
REM **INITIALISE AND **

**CHQQSE CODE * *
LET GUESS=0
LET C«§i = ""
LET N $ ~ "123456"
FOR F=1 TO 4
LET ChC-}-N$ (INT <RND*©>*1/
NEXT F
CLS
PRINT “INPUT YOUR GUESS";

B E"

LET MORK =0
GOSUB 400
IF MARK =1 THEN GOTO 110
LET GUESS = GUESS *1
PRINT RT GUESS +3.. l.i G$.;TfiB

gosub see
GOSUB 600
PRINT RST.; TfiB 9.; DOLLAR
REM **SEE IF IS TRIES **

**OR CODE CROCKED#*
IL-5SI;£ °R OUESS-1S THEN GOTO 2000
REM *a-LODP TO NEXT GUESS**
GOTO 110
REM * * * * * * * * * * * ^ g,
REM
REM
REM «CHECK INPUT * *
REM

TO LEN GU
* £ ,£?DELG&iF) >3* or CODE
NEXT * F29 ™EN LET WftRKal

= 1 LEN G^< >4 THEN LET MARK

514

4S@ IF NOT MARK THEN RETURN
4-60 PRINT RT GUE5S+3,0.;

"UHAT? ";G*; “7 TRY AGAIN. "
47© PAUSE 10©
480 PRINT AT GUESS+3..0;

49© RETURN
495 REM *****************
49© REM
50© REM **FXND H NUMBER**
5©5 REM
506 LET A $-0 51
51© LET AST-0
520 FOR F = 1 TO 4
53© XF RMF) <JG$(F) THEN GOTO

57©
540 LET AST“AST*1
55© LET G$ <F> ^"0"
560 LET AS(F)=,*X“
57© NEXT F
58© RETURN
590 REM ****************
ggg
6@© REM **FJND f| NUMBER**
61© REM
©90 LET DOLLAR =©
©3© FOR F — 1 TO 4
64© FOR N = 1 TO 4
65© IF A$ (F) < >G$(N) THEN GOTO

©90
66© LET DOLLAR=DOLLAR*l
67© LET Aii <F)
630 LET G$(N)="0"
69© NEXT N
700 NEXT F
71© RETURN
720 REM ****************
730 REM

1000 REM **INSTRUCTIONS**
1010 REM
1020 PRINT TAB 12; "*******".; TAB
12; " *CODER*"; TAB 12; "*******"
103© PRINT"COMPUTER CHOOSES f,

SEQUENCE' OF" .."4 NUMBERS.THIS IS
MADE UP OF","ANY OF THE DIGITS

1 TO 6'L “INCLUSIVE.DIGITS MAY BE
REPEATEDSO THAT SEQUENCE COULD

BE l©S3,","FOR EXAMPLE."
1040 PRINT ./‘YOU INPUT SEQUENCE
5 to TRY AND","MATCH THE CODE."
105© PRINT ,."COMPUTER WILL PP.XH
T NUMBER OF EL SIGNIFYING CORRECT

DIGIT IN","RIGHT POSITION,AND U
UMBER OF fl, MEANING A DIGIT IN G
UESS WHICH "
I©©© PRINT "OCCURS IN THE CDHPUT
ERS CODE,","BUT IS NOT IN THE RX
GHT PLACE*"
107® PRINT ,,"PRESS A KEY TO PLR

108© IF INKEYTHEN GOTO lOBO
1090 RETURN
1100 REM ****************
111© REM
2000 REM **END ROUTINE**
2010 REM
20g© IF R5T=4 THEN GOTO 2050
|?30 PR1nt " IS TRIES AND NO SUCC¬
ESS . CODE" , "URS C*
2040 GOTO 2060

"0TRIESrT " <SUCCESS IN GUESS;

.206© PRINT "ANOTHER GAHET/.INPUT
Y OR N)
2070 INPUT M $
©0g0 IF M$="Y" THEN GOTO SO
d090 CLS
3000 PRINT "OK,BYE."
9980 REM
9990 REM ** ****END******
9999 STOP

INPUT YOUR GUESS
B 11

1122 1 1
2845 0 3
1345 © 3

515

5432 1 2
3342 1 1
6122 i 1
3162 2 1
1353 © 3
6132 1 2
1362 1 2
4632 i 1
5332 1 2
4352 l 2
3342 2 ©
3512 4 0

< SUCCESS IN 15 TRIES:*
RNOTHER GRME? (INPUT V OR N.V

12. Plot

A simple program to plot a graph of data points, with X and Y values input on the

screen. Prompts for X and Y axis minimum and maximum values are made, and string

inputs for the axis titles. These are then printed, and the data input is prompted. X and

Y values for each data point are entered, which is then plotted, and more data is
requested.

Spectrum: Change line 310 to read PLOT 12 + 244 * (X-A)/(B-A),

12 + 156 * (Y-C)/(D-C)

_± REM.**PLOT**

|| pgxNT TBB ©; ''maaaamBUBgt''
5BJNT “SET AXIS RANGES"

^4© PRINT "INPUT X AXIS N2N.WL

50 * INPUT A
60 PRINT R

t^7@ PRINT "INPUT X AXIS MfiX.VflL

50'' INPUT B
90 PRINT B

()180 PRINT "INPUT Y RXIS HIM • UAL

“ll©'INPUT C
12© PRINT C

(j130 PRINT "INPUT Y RXIS MAX„URL

140’’ INPUT D
15© PRINT D
16© PRINT "INPUT X RXIS TITLE "

'17© INPUT X$
16® PRINT X*
19® PRINT "INPUT Y RXIS TITLE "

’S00 INPUT Y$
210 PRINT Y$
as© cls

PRINT RT 21,6.;X$
24-0 FOR 1 = 1 TO LEN Yt
250 PRINT RT I +5.0; Y* (17
260 NEXT X * * *

Is! INPUT ST *"

ill INPUT YT ®'0;"INPUT Y”

<y-c> ✓VdU?+S1*
32® GOTO 27©

13. and 14. Bidec

Program converts binary numbers to their decimal equivalents. Two programs are

given, differing in the conversion procedure applied to the binary number, which is

input as a string. The algorithm of BIDEC *2 is more transparent than that of BIDEC.

Spectrum users have the facility to input binary numbers directly (using BIN), but this

516

cannot handle numbers input in the course of a program, or generated by a program,

in which case a routine of this type is required.

BIDEC *2

Spectrum: f not ** in line 50.

1 REM &BIDEG &
2 REM CONUERT3 BINfiRY NUMBERS
INTO DECIMAL

a®0 PRINT "ENTER BINARY FORM"
11® INPUT A$
120 PRINT
130 PRINT A$;" IN BINARY IS"
14© LET RsLEN Ft$
150 LET N-URL ft*11)
16© FOP F«2 TO R
17© LET N=2*N+URL ft*(F)

16® NEXT F
19© PRINT „
200 PRINT N;" IN DECIMRL

5 REM "BIDEC
1© PRINT "INPUT BINARY NUMBER*
2© INPUT B *
3® LET N —0

4-© LE“ p=©
5© FOR P=LEN B* TO 1 STEP -1
60 LET N*N +V+1L B* VFT +2 * *F
70 LET P-P+l

©0 NEXT F

15. Hexdec

Program converts hexadecimal numbers up to FFFF (65534 decimal) into decimal!. As

with DEC HEX, the straightforward conversion of a character code to a decimal value

which is possible on the ZX81 is more complex on the Spectrum. Line 130 in the ZX81

version uses the value of the loop variable K directly to get the decimal value from the

character code. On the Spectrum a counter loop is set up to hold and increment the

value of K, and a new variable Z is used to hold the number by which K is to be

reduced to give the correct decimal value from the hexadecimal character.

Spectrum: Line 50 needs f , not **
Insert 55 PRINT “ LETTERS MUST BE CAPITALS.”

Insert 115 LET K = 48: LET Z = 48

Change 120 to read‘120 FOR Y = 0 TO 15
Change 130 to read 130 IF A(F) = K THEN LET N = ((IC - Z)*X) + N

Insert 135 LET K = K + 1
Insert 136 IF K = 58 THEN LET K = 65: LET Z = 55

Change 140 to read 140 NEXT Y

1 REM +HEXDEC*
1® DIM ft <43
20 L ET^ N = _

mS"
4© PRINT
50 PRINT "ENTER HEXADECIMAL NO

6© PRINT
7© INPUT H $
S© PRINT H *;
9© FOR F»1 TO LEN H$

1©© LET fl(F) =CODE H *(F)
11© LET X=16**(LEN H*-F)
120 FOR K”20 TO 43
13® IF R(F)“K THEN LET N=t<K-SEf

> *X) +N
14© NEXT K
15© NEXT F
160 PRINT " IS “.»* N.,‘ IN DECIMAL

517

*17© PRINT
18© PRINT "AGAIN?(N OR Y > "
HI |E XNKEY«a"Y" THEN GOTO 3Q

16, Dechex

Program converts decimal (base 10) numbers up to 65534 to their four-figure

hexadecimal/(base 16) equivalents. Hexadecimal numbers use the digits 0 to 9 plus the

letters A to F. This requires a means of deciding which character is to be printed, after

the decimal number has been broken down. On the ZX81 this is simple, since the

(capital) letters A to F follow directly after the digits in the character code sequence.

This is not the case on the Spectrum, and the gap in the sequerice must be bypassed.

CHR$ can then be used to change the decimal values (0 to 15), into which lines 120 to
170 break down the input number, to the appropriate character.

Spectrum: Change 190 to read 190 LET X = 48

Insert 205 IF X - 58 THEN LET X = 65

1 REM DECHEX
1© DIM R(4)
2© DIM A!§iC4>

n "DECIMRL BRSE TO HEXR
DECIMRL BRSENUHBER CONVERSION"

4© PRINT
gg PRINT "NUMBERS <55535 ONLY"
6© PAUSE 85©
7© CLS

If INPUT nINPUT DEC1HW- w»lue«
100 PRINT
1*1© PRINT N;
§g hi I gti: =INT (N/*4©95V

hiX g=NrR(1)^4096
LET R{2.» =INT tB/256)

Jgg LET CsB-R <2j *255
15© LET A(3J=INT (C/16>
17© LET A (4) =C —R <3) #16
130 FOR F = 1 TO 4
190 LET X = 2©
20© FOR Y =0 TO 15
21© IF R(F)=Y THEN LET A*IF>=CH

n220 LET X = X + 1
280 NEXT Y
24© NEXT F
250 PRINT " 15 R$;« IN HEX"
as® PRINT AT 12,0;"HIT MEDLINE

TO RUN AGAIN*' ’ WL
HX0 INPUT B £
28® GOTO 70

17. Gridhunt

The computer hides itself on an 8 by 8 grid, which is displayed on the screen. You input

your guesses of the co-ordinates, the guessed square is marked, and if not correct the

computer gives a prompt for its direction from this square, using compass directions.

1 REM *GRIDHUNT*
10 PRINT "HAIgMa'1
30 FOR X=2 TO IS STEP 2
34 IF X/2 = 9 THEN GOTO 4©
35 PRINT AT 2 , X +1; X ^ 2 ; AT X 42 , 1

* 4-0 PRINT AT 3 , X; *'+■•; AT 19,X;" I

45 PRINT AT X*i,2;"+
S;*‘ + **

5© NEXT X
60 LET E=INT (RND^S)
70 LET N=INT (RNDfS)
80 LET G=(E~3T*S+N
9© LET M=©

•*at

+ 1
+ 1

X*l, 1

518

100 PRINT AT 3,20;"YOUR GUESS: -
’CAT 5,20; "ACROSS?"

110 INPUT A
12© PRINT AT 5,26;" ; A; AT 7,2©

S"DOWN?"
130 INPUT D
131 FOR X = ± TO 5
132 PRINT AT 2+D*2,1+A*2; "sP”
133 PRINT AT 2 +D*2,1 -ffl^-2;
134 NEXT X
135 PRINT AT 2 +D*2,1 + A*2; " *"
140 PRINT AT 7,24;“ ";D;AT 9,2©

'* 145 LET M=Nfi
15© LET C=(A-i)^©*D
16© IF C=G THEN GOTO
165 PRINT *' I AM
17© IF N=D THEN GOTO 2 1©
19© IF M>D THEN PRINT "S
2©0 IF N <D THEN PRINT "N
21© IF E > A THEN PRINT "E
22© IF E < A THEN PRINT "u
*230 PRINT " ";TfiB 52;, "OF YOU"
24© PAUSE 2©0
25© FOR X TO 1©
26© PRINT AT X^©;"
27© NEXT X
28© GOTO 1©0
290 STOP
3©0 PRINT "GOT ME";TAB 52;”IN "

; M; " mooes"
31© PRINT AT 20,0;"PRESS A KEY

TO PLAY"
32© IF INKEY$a"" THEN GOTO 32©
33© PRINT AT 2©,©;"

34© CLS
35© GOTO 1©

18. Rescode

Program calculates resistor values from inputs of the colour bands on the resistor.

Three bands are input, end band first, using the abbreviations given. The first two
bands define the basic value and the third the multiplier.

1© REM RESCODE

ndb®ndRfxrs:i:"NTER colour BfiNDS'E
30 PRINT
40 PRINT "USE CODES AS BELOW-"
5© PRINT TAB 6;"RED RE";TAB

6;"BLACK BL";TA© 6;"BROUN BR"
; TAB 6; "ORANGE OR'*;TAB 6; "YELLOW
YE”;TAB 6; "GREEN GR";TAB 6; "BL

UE BL";TAB 6;"UIOLET UI";TfiB 6
, "GREY GY“; TAB S;"t4MXTE UH";T
AB 6;"GOLD GO";TAB 6;"SILUER S
X"

60 FOR A = 1 TO 3
7© PRINT "COLOUR ";A;"7
80 INPUT C$
90 PRINT C$

100 IF C$=MBK” THEN LET U=©
11© IF C$a,’BR<' THEN LET U-l
12© IF C$="RE" THEN LET U=2
13© IF C$="OR" THEN LET U=3
140 IF C$="YE" THEN LET U=4
150 IF C$="GR" THEN LET U=5
160 IF C$="BL" THEN LET U=6
170 IF c|="UI" THEN LET U=7
180 IF C$="GY" THEN LET U=8
190 IF C$» = "WH" THEN LET 0=9
200 IF C$="GO" THEN LET U=10
210 IF c|="SI" THEN LET U=10@
220 IF A=1 THEN LET F=U
230 IF R =2 THEN LET F=F*10+U
240 NEXT A
250 PRINT "RESISTANCE UALUE IS

a&0 IF u>9 THEN GOTO 36©
2*70 PRINT F;_
28© FOR A = 1 TO U
29© PRINT
3©0 NEXT A

519

310 PRINT " OHMS"
320 STOP
3S@ PRINT FVU;
370 PRINT " OHMS"

19. Marker

Program produces a marksheet for the pupils in a class after exam results are entered in

five subjects, set in this program as English, Maths, French, Computing and Biology,

The average mark for each pupil is calculated, and a grade breakdown of the results is

printed, giving the total number of pupils in each grade. The grades are defined as:

45% or less FAIL

45 to 75% PASS

More than 75% DISTINCTION

As initialised, the program allows up to ten pupils in each class. A pupil name is

entered with the results in each of the subjects, and the average calculated. When all

entries have been made, END is entered and the subjects, results and grades for each

pupil are printed. The grade breakdown is then given of the number of pupils in each
grade for each subject.

1 REM "MRRKER"
5 LET TI=0
6 LET T2=0
7 LET T3=©
© LET Z$=MEND

I® DIM 1*1© , 20)
2© DIM Rf 10}
25 t>XM D V5>
a© DIM PC5)
27 DIH F 1*5}
30 DIH S$ VS,10)
4-0 DIM MfI0v5i
S3 PRItiT "NRRK SHEET"
3© PRINT " ************
7® PRINT ""
8© PRINT

1©0 LET 1=1
11© LET C=©
12® LET S$U) ="ENGLISHM
13© LET S$iE2) ="MRTH5"
14-© LET S$f3) =*TRENCH"
15© LET 3$ (4-) = ” COMPUTING '*
130 LET S$l‘5) ="BIOLOGY"
20© PRINT "ENTER NAME (ENTER EM

D TO FINISH) ; ";
21© INPUT B$(I)
22© PRINT RSMX)
23© IF R$(Ii=Z$ THEN GOTO 5©©
24-© GOSUB 1©©©
25© LET 1 = 14-1
252 LET 0=0*1
253 COPY
255 CLS
26© GOTO 2©0
50© REM CALC AUERRGES
5©1 COPY
5©S CLS
51© FOR 1=1 TO C
52© FOR 0=1 TO 5
53© LET R V I)=H(1,0)+R(I)
54-0 NEXT O
55© NEXT I
60© FOR 1=1 TO C
61© PRINT "NBME
615 PRINT ""
62© PRINT "SUBUECT**;TRB 15; "MAR

K**;TR© 2©; "GRADE"
625 PRINT "---

63© FOR 0=1 TO 5
635 IF M(I,J)>75 THEN GOSUB 200

636 IF M V J , U) > 4-5 AND M (I, O) =75
THEN GOSUB 22©®
637 IF M IT , O) < =4-5 THEN GOSUB 24-

0©

520

64-© PRINT 5^(0) ; TAB XS;M(X,0);T
RB 201G$

65© NEXT O
665 PRINT "**
666 PRINT *’ RUERRGE = R (I) /S
667 PAUSE S@©
668 COPS*
68© CL6
67© NEXT I
70© PRINT "GRADE BRERKDOUN BY 3

UBJECT"
71© PRINT ----------------

72© PRINT *'SUBOECT'*; TAB 15; "DIB
T ;TAB 22; "PASS";TRB 27; "FAIL"

725 PRINT ""
73© FOR 0 = 1 TO 5
74-0 PfilNT 5$ VO) ; TAB 19H> VO) ; TAB
22;P VO);TAB 27;FVO)
75© LET T1=T1+DCO)
76© LET T2=T2*P VO)
77© LET T3=T3+F(J)
SO© NEXT O
81© PRINT ""
02© PRINT "TOTBL";TBB 1S;T1;TAB
22;T2;TAB 27;T3
83® COPY
85© STOP

1©®0 REM INPUT DATA
104-© FOR 0 = 1 TO 5
105© PRINT "SUBOECT S* CO) ; " HR
RK ; " ;
1©6® INPUT M(1,0)
1©7© PRINT H VI/O)
1®8® NEXT O
HO© RETURN
200© REM DISTINCTION
2®1© LET G$ ^'DISTINCTION"
2®2© LET D VO) =D VO) +1
203© RETURN
22©© REM PASS
221© LET G$="PRSS"
222© LET PVU)=PVU)*1
223© RETURN
24-0© REH FAIL
24-1© LET G$ = "FAILM
24-2© LET FVU)=PVU)*1
24-3© RETURN

20. Indate

Program is a date entry routine, with the input subroutine starting at line 10, and,

nested within this, an error notice subroutine at line 250. On running the program,

control passes to line 300, which has a short example of the manner of use of the

subroutines. Subroutines are usually grouped at the end of a program, but they can

equally well be put at the beginning, as shown here. With long programs, using the

subroutines repeatedly, this can speed execution, since the computer counts from the

start of a program to find the line number corresponding to a GOSUB or GOTO

destination.

1 REM "INDATE"
2 REM *DRTE INPUT ROUTINES
3 REH *DflTE ENTRY/CHECK 5UBRO

UTINES.ENTRY GOSUB 1©,ERROR MESS
RGE GOSUB 250*

5 GOTO 300
8 REH *********************
9 REH **DRTE ENTRY SUB**

1© PRINT "ENTER DATE"
2© PRINT "DAY?"
3© INPUT D
4© IF D>=1 RND D < =31 THEN GOTO

7©
50 GOSUB 25©
6© GOTO 2®
70 PRINT "MONTH*? (1 TO 12)*'
8© INPUT M
GO IF M > =1 RND M < =12 THEN GOTO

12©
100 GOSUB 25©
11© GOTO 7©
12© PRINT "YERR?(RS LRST 2 DIGI

T5) "

521

13© INPUT V
14© IF V >10 RND V <99 THEN GOTO

17©
15© GOSUB 25©
160 GOTO 120
17© REM JCHECK DRY US MONTH*
1©© REM *LERP YERR*
19© IF I NT ((Y +190©) .43 < > (Y+19©

0)/4 RND M=2 RND D=29 THEN GOTO
220

20© REM fSHORT MONTHS*
210 IF NOT ((H^2 RND D>29) OR (

CH=4 OR M=B OR M=9 OR H=113 RND
D=31>3 THEN GOTO 240
22© GOSUB 250
23© GOTO 1©
240 RETURN
248 REM **********************
249 REM * TERROR NOTICE SUB**
2S© PRINT ** ***XNPUT ERROR***’' >

PLER5E FOLLOW INSTRUCTIONS’5 , "RE"
INPUT REQUESTED DfiTR«
260 PRU5E 18©
27© CCS
2©@ RETURN
3©© REM ***PROGRRM HERE TO USE

INPUT ROUTINES***
31© REM ^EXAMPLE*
32© PRINT "YOUR B1RTHDRY"
33© GOSUB 1©
34© LET BD=D
350 LET BM=M
35© LET BY=Y
37© CLS „ o
38© PRINT "BIRTHDRTE: ";BD; *Vn;B

M;”✓19”;BY

21. Headliner

Program prints banner headlines on the printer, using the character arrays stored in

ROM. As listed, the program allows the inverse characters of the ZX81 to be used,

accessing the normal character (line 130) to get the pattern of bits, but reversing this

(i.e. swapping black for white) for printing (line 560). This procedure is not possible on

the Spectrum, since the inverse forms are not included in the character set. The basis of

the program is the reading of the character arrays (as with the BIGPRINT program in

Unit U3 of the main text), but with the additional complication of reading the first bit

of each byte, then the second bit of each byte, and so on, in order to print a character
with a sequence of printer lines.

Spectrum: Delete lines 40, 120. 130, 550, 560

Change line 160 to read: 160 LET L = PEEK (15360 +

C + 8 * CODE L$)

X REM ^HEADLINER*
1© PRINT TAB Q; "fflaiWmB'1 : TAB

a;
2© PRINT i,i“PROGRAM TO PRODUC

E LRRGE PRINT","R5 HERDLINES RLG
NG PRINTER PAPER”

3© PRINT ,,;"INPUT RNY LENGTH
STRING-"

40 PRINT j f; "YOU MRY USE ALL L
ETTERS,NUMBERS","RND GRAPHICS.”

5© REM DIM ARRAY TO STORE LETT
ER

60 DIM R(643
7© INPUT Ugi
8© FRST
9© FOR F=1 TO LEN U&

10© REM TREE LETTER
11© LET L$=U$CF)
120 REM IF GHR INUER5E THEN

SWAP FOR NORMAL FORM
13© IF CODE L$>63 THEN LET L$=C

HR$ (CODE UHtFJ-X283
140 REM GET RON CODES
150 FOR C=\3 TO 7
160 LET L=PEEK (7680+C+8*COD£ L

522

170 REM GET BINARY INTO RRRRY
18© FOR B — 1 TO 8
19© IF L —2 *INT (L/2) =1 THEN GOT

O 220
2O0 LET R(8*C+B)=©
210 GOTO 230
22© LETT R (8*C+B) =1
23© LET L=INT (L/2)
240 NEXT B
250 NEXT C
280 GOSUB 500
27© NEXT F
28© STOP
50© REM PRINT SUBROUTINE
51© REM REUER5E LOOPS
520 FOR X =8 TO 1 STEP
53© LET R$ = ””
540 FOR Y=7 TO © STEP -1
550 REM REVERSE IF CHR INSERTED

BEFORE
56© IF CODE U$(F) >63 THEN LET R

(Y*S+X) =MOT R(Y*8*X]t
570 REM PUT ONE ROW OF CHR INTO

R «$s
58© IF R(Y*8+X)=1 THEN LET Rf§l=R

$590 IF RCY*8+X)~© THEN LET R®=R
S + ”

60© NEXT Y
610 LPRINT
62© LPRINT R $
63© NEXT X
64© RETURN

22. Input

Program checks a number input as a string. This is a useful way to input numbers, as

an error will not cause a program halt, as will happen, for instance, if a numeric input

contains more than one decimal point. The program is listed as an input check for

decimal currency, but is easily modified to suit any numeric input of a known form.

The string input is checked by the subroutine at line 200, each character in turn

being checked by means of its code to ensure it is either a digit or a decimal point. To

check for multiple d.p, ’s the counter S is incremented each time one is encountered. M

is set equal to the number of digits before the d.p. A check is then made for S being

greater than 1 (non-numeric character or more than one decimal place), 0 (no d.p.),

and for more than two digits after the d.p. Any error sends control to the error

subroutine at line 400. This requests a re-input the number. The error check

subroutine is then called recursively to check this input. A correct input will pass

control back to the main program, where the user is given the opportunity to check that

the input value is correct.

1 REM
S REM

NUMBER
9 REM

1© LET
15 LET
19 REM
20 LET

”INPUT"
STRING INPUT

^MARKERS*
5 = 0
M=©
EMPTY LINE

CHECKED

“ENTER RHOUNT % ENTER P

uU^siNPu?uh^STOR -PEMCE •• - 85^
50 GOSUB 20©
59 REH sOFFER VALUE CHECK*
6© PRINT RT 20,0;"ENTRY VALID,

ENTRY INPUT C TO COHF
IRM..E TO RE-ENTER"

70 INPUT R&
8© IF R $ ~”C” THEN GOTO 17©
9© IF R$»"E" THEN GOTO 12©

100 PRINT RT 2©,©;"FOLLOU XN5TR
UCTIONS.

X10 GOTO 70
12© PRINT RT 2®,©.; Etum* 21,®.;E$>
130 PRINT RT 2©,®.; "ENTER GOP.REC

T VALUE."
140 INPUT N$
15© PRINT RT 2©,©; Eli.;

523

160 GOSUB 200
170 CLS
1S0 PRINT “END OF PROGRRN“
13© GOTO 393
199 REM *ERRQR CHECK *
20© LET L=LEN N$
210 FOR F = 1 TO L
219 REM *CHECK NON-NUMERIC CHRC

22© IF CODE N* (F) <27 OR CODE. N$f
(F)>37 THEN LET S = 2
229 REM *CHECK FULLST OP *
23© XF N$(F)="." THEN LET SsS+l
g4© JF. Ni<F> THEN LET fHF
250 NEXT F
2g© XF L-Mo-S OR S>1 OR S=£> THE

N GOSUB 4-0©
27© RETURN
399 REM TERROR FOUND*
400 print err 21, ©.; " *xnput xnurl

ID *RE-ENTER URLUE"
41© INPUT N$
411 LET 5=0
412 LET M-0
420 GDSUB 20©
43© RETURN
993 REM *END*

250 PRINT S
260 PAUSE 250
270 CLS
280 PRINT "PRESS NEWLINE FOR"
290 PRINT "ANOTHER GAME"
300 INPUT A$
310 IF A$-"" THEN GOTO 80

23. Asteroids

The program puts you at the helm of a Mars shuttle disguised as an asterisk. Avoiding

the Nova Heat you have to weave through the strangely square low albedo asteroids

that look surprisingly like inverse squares. Your controls are fairly minimal - not rhuch

money on the Mars run smuggling algae these days, so you have a button marked 1 to
go left and one marked 0 to go right.

The program cannot be simply modified for the Spectrum so this listing applies to the
ZX81 only.

5 REM "ASTEROIDS"
10 PRINT "**ASTEROIDS**"
20 PRINT
30 PRINT "AVOID BLACK ASTEROID

S"
40 PRINT "YOU STEER YOUR SHIP

<:#)"
50 PRINT "BY PRESSING 1 TO GO

LEFT"
60 PRINT "AND 0 TO GO RIGHT"
70 PAUSE 400
80 CLS
90 POKE 16418,8

100 LET S=0
110 LET i>10
120 SCROLL
130 PRINT AT 5»CJ
140 IF PEEK (PEEK 16398+256* P

EEK 16399)=128 THEN GOTO 250
150 PRINT
160,LET L=C
170 IF INKEY$ THEN GOTO 190
180 LET C=C-<C>1 AND INKEY* ="1

") + <C<19 AND INKEY* ="0")
190 PRINT AT 8, RND *20?"®"
200 LET 8=8+1
210 PRINT AT 5»LJ" "
220 GOTO 120

524
525

